

Proyecto de Construcción de Acometida Eléctrica y Mejoras en la E.D.A.R. de Valdemaqueda (T.M. de Valdemaqueda)

Tomo 01 de 06

Documento nº 1.- Memoria y Anejos I Memoria. Anejos 01 - 10

Autores del proyecto

Emilio Villar González / Miguel Abad Castiella

Madrid, Septiembre de 2016

Proyecto de Construcción de Acometida Eléctrica y Mejoras en la E.D.A.R. de Valdemaqueda (T.M. de Valdemaqueda)

Tomo 01 de 06

Documento nº 1.- Memoria y Anejos I Memoria. Anejos 01 - 10

Autores del proyecto

Emilio Villar González / Miguel Abad Castiella

Madrid, Septiembre de 2016

TOMO 1 DE 6

Documento nº 1.- Memoria y Anejos

Memoria

Anejos

- Anejo nº 1. Características principales del proyecto
- Anejo nº 2. Cartografía y topografía
- Anejo nº 3. Estudio geológico y geotécnico
- Anejo nº 4. Tramitación ambiental y arqueológica
- Anejo nº 5. Cálculos estructurales
- Anejo nº 6. Media tensión y centro de transformación
- Anejo nº 7. Cálculos eléctricos de baja tensión
- Anejo nº 8. Instrumentación y control
- Anejo no 9. Trazado y replanteo
- Anejo nº 10. Estudio de expropiaciones

TOMO 2 DE 6

Documento nº 1.- Memoria y Anejos

- Anejo nº 11. Conexiones exteriores, servicios afectados y consultas
- Anejo nº 12. Autorizaciones Administrativas necesarias
- Anejo nº 13. Plan de Gestión de Residuos
- Anejo nº 14. Documentación a entregar por el contratista
- Anejo nº 15. Señalización corporativa para instalaciones de Canal de Isabel II Gestión S.A.

Índice

TOMO 3 DE 6

Documento nº 1.- Memoria y Anejos

- Anejo nº 17. Medidas de prevención y seguridad en las instalaciones de Canal de Isabel II Gestión S.A.
- Anejo nº 18. Relaciones del contratista con la dirección de obra
- Anejo nº 19. Control de calidad de las obras
- Anejo nº 20. Justificación de precios
- Anejo nº 21. Plan de Obra
- Anejo nº 22. Estudio de Inundabilidad del arroyo de Rodajos a su paso por la E.D.A.R. de Valdemaqueda

TOMO 4 DE 6

Documento nº 2.- Planos

TOMO 5 DE 6

Documento nº 3.- Pliego de Prescripciones Técnicas

- A) Pliego de Prescripciones Técnicas Generales
- B) Pliego de Prescripciones Técnicas Particulares
- C) Especificaciones Técnicas

TOMO 6 DE 6

Documento nº 4.- Presupuestos

- Mediciones
- Cuadro de precios nº 1
- Cuadro de precios nº 2
- Presupuestos parciales
- Presupuestos generales

Índice 2

DOCUMENTO	NO 1 _	MEMORIA	V	ΔNF	105
DUGUNENIU	14 - 1 -	IVITIVILIA		AIVE.	11 1.7

DOCUMENTO Nº 1.- MEMORIA Y ANEJOS MEMORIA

INDICE

	MITDO	NO LIGALÁ	N.		
1			N		
	1.1		EDENTES		
	1.2		O DEL PROYECTO		
2		CONDICIONANTES INICIALES Y DATOS DE PARTIDA			
	2.1		O GEOGRÁFICO Y EMPLAZAMIENTO		
	2.2		INSTALACIONES EXISTENTES3		
	2.3	CONDICIONANTES CONSTRUCTIVOS			
		2.3.1	GEOLOGÍA Y GEOTECNIA	_	
		2.3.2	TOPOGRAFÍA	6	
		2.3.3	HIDROLOGIA		
		2.3.4	PUNTOS DE CONEXIÓN	7	
		2.3.5	CONDICIONANTES AMBIENTALES	9	
3	DESC	DESCRIPCIÓN DE LA SOLUCIÓN ADOPTADA			
	3.1	ACOM	ETIDA ELECTRICA	11	
		3.1.1	SISTEMA DE ABASTECIMIENTO ELÉCTRICO ACTUAL	11	
		3.1.2	DISTRIBUCIÓN ELÉCTRICA DE BAJA TENSIÓN	12	
		3.1.3	CONDICIONANTES PREVIOS SOBRE LA ACOMETIDA	13	
		3.1.4	ACTUACIONES A REALIZAR	13	
	3.2	ACTUA	CIONES EN LA PLANTA DEPURADORA	16	
		3.2.1	INSTALACIONES ELÉCTRICAS	16	
		3.2.2	SISTEMA DE CONTROL	20	
		3.2.3	EDIFICIO ELÉCTRICO, CONTROL Y SOPLANTES	21	
	3.3	ACTUA	CIONES AMBIENTALES	22	
4	PLAN	DE GEST	TIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN	22	
5		INTERFERENCIAS A LA EXPLOTACIÓN DURANTE LA EJECUCIÓN DE LAS OBRAS23			
6	TRAM	ITACIONI	ES Y LEGALIZACIONES	25	
7	DOCU	DOCUMENTOS DE QUE CONSTA EL PRESENTE PROYECTO			
8	CLAS	CLASIFICACIÓN DEL CONTRATISTA27			
9	REVIS	REVISIÓN DE PRECIOS28			
10	PRES	UPUESTO	os	28	
11	PLAZ	OS DE EJ	ECUCIÓN Y GARANTÍA	29	
12	CONC	LUSIÓN.		30	

1.-INTRODUCCIÓN

1.1 ANTECEDENTES

La Ley 17/1984 reguladora del Abastecimiento y Saneamiento del agua en la Comunidad de Madrid establece que los servicios de aducción y depuración son de interés de la Comunidad de Madrid, a la que corresponde la planificación general, con formulación de esquemas de infraestructuras y definición de criterios, en orden a dotar a todos sus ciudadanos de un abastecimiento con garantía de calidad y cantidad, así como de un saneamiento que minimice el impacto de los vertidos en los ríos. Estos servicios a los ciudadanos se realizan a través de Canal de Isabel II Gestión, que es la sociedad anónima responsable del ciclo integral del agua en la Comunidad de Madrid.

La gestión del saneamiento abarca el transporte de las aguas residuales a través de las redes de drenaje urbano a las estaciones depuradoras de aguas residuales (E.D.A.R.), la posterior depuración de éstas y su devolución al cauce de los ríos en condiciones óptimas. Para ello, Canal de Isabel II Gestión cuenta con un complejo sistema que consta de: redes de saneamiento y alcantarillado municipal (colectores y emisarios), estaciones de bombeo de aguas residuales, tanques de tormentas y estaciones depuradoras de aguas residuales.

La cuenca del río Cofio cuenta con ocho plantas de depuración de aguas residuales que dan servicio a: Colonias de La Estación, Las Jutas y El Pimpollar, La Hoya, La Paradilla, Las Herreras, Robledo de Chavela, Robledondo, Santa María de la Alameda y Valdemaqueda.

La planta depuradora de Valdemaqueda, situada en el término municipal del mismo nombre, es una instalación que dispone únicamente de paneles solares para el suministro de energía eléctrica.

En un futuro próximo, la planta depuradora deberá ampliarse para incrementar su capacidad de tratamiento y mejorar también la calidad de su vertido. Esta actuación necesitará de una nueva acometida eléctrica a la red.

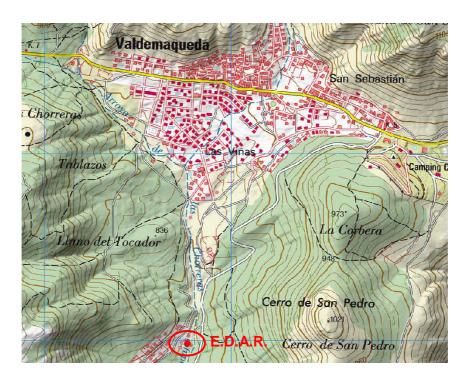
1.2 OBJETO DEL PROYECTO

El objeto de las obras descritas en el presente proyecto es la definición técnica y económica de las siguientes actuaciones:

- Ejecución y puesta en servicio de una nueva acometida eléctrica en media tensión y de un centro de transformación propiedad Compañía distribuidora, con potencia suficiente tanto para las instalaciones futuras de la EDAR como para otros clientes de la red de abastecimiento eléctrico. Dentro de la planta depuradora se instalarán nuevos equipos de baja tensión y alimentación a los motores existentes. Los paneles solares así como sus instalaciones auxiliares se desmontarán y se retirarán.
- Construcción de un nuevo edificio para alojar en su interior las instalaciones eléctricas, zona de control, almacén, y sala para futuras soplantes para pretratamiento y tratamiento biológico.
- Otras actuaciones menores para mejorar la explotación y mantenimiento de las instalaciones.

2.-CONDICIONANTES INICIALES Y DATOS DE PARTIDA

2.1 ÁMBITO GEOGRÁFICO Y EMPLAZAMIENTO


Valdemaqueda, es un municipio perteneciente a la Comunidad de Madrid. Forma parte de la comarca de la Sierra Oeste, enclavada en el extremo suroccidental de la región madrileña, en el límite con Castilla y León. Linda al norte con Santa María de la Alameda, al este con Robledo de Chavela y con Santa María de la Alameda, al sur con Robledo de Chavela y al oeste con la provincia de Ávila.

Desde una de sus calles principales, avenida Puente Romano, se llega al límite sur de la localidad donde comienza el camino de Valdemaqueda a Villaescusa. Éste camino de tierra es que conduce hasta la parcela de la EDAR, discurriendo paralelo al arroyo de Rodajos.

Valdemaqueda tiene una superficie de 52,2 km², que se extienden por una zona montañosa encuadrada geológicamente en la Sierra de Guadarrama. El municipio está atravesado por el río Cofio, uno de los principales afluentes del Alberche y éste del Tajo, con lo que su término municipal pertenece a la cuenca hidrográfica de este

último río. Otras corrientes fluviales son los arroyos de las Chorreras, del Hornillo, de la Puebla y de la Hoz. La altitud media de la localidad es de 872 m sobre el nivel del mar.

La localidad cuenta con un importante patrimonio ambiental, protegido legalmente mediante la inclusión de parte de su término en la ZEPA (Zona de Especial Protección de Aves) de los Pinares de Valdemaqueda.

2.2 INSTALACIONES EXISTENTES

La E.D.A.R. de Valdemaqueda, perteneciente a la cuenca del Tajo, se sitúa al sur de la población de Valdemaqueda, al oeste de la Comunidad de Madrid quedando limítrofe con Ávila. Tiene su acceso a través del camino a Villaescusa.

La E.D.A.R. da servicio a la población de Valdemaqueda, siendo ésta preferentemente de tipo residencial.

La depuradora actual se construyó en una única fase y recientemente se realizó una mejora en la línea de fangos introduciendo un espesador de fangos con purga y bombeo.

En la actualidad consta de las siguientes instalaciones:

1. Línea de agua

- Pretratamiento: tanto para el debaste como para el desarenado existen dos canales.
 - o Reja de predesbaste
 - Desbaste: 2 canales aislados por compuertas manuales. Un canal con tamiz automático, más un canal de emergencia dotado de una reja automática. Los residuos son evacuados mediante una prensa hidráulica a un contenedor.
 - o Desarenado: dos canales
- Decantación primaria: dos decantadores estáticos prefabricados rectangulares, de acero. Los fangos que se extraen de la decantación primaria se envían a la arqueta de fangos por bombeo.
- Reactor biológico: tratamiento de lechos bacterianos mediante biodiscos rotativos. Dispone de dos líneas de tratamiento, de giro accionado por motor eléctrico equipado con variador de frecuencia que permite regular la velocidad de giro y con ello el periodo de aireación.
- Decantación secundaria—clarificación: existen dos decantadores estáticos prefabricados rectangulares, de acero. Los fangos biológicos se recirculan al principio de la línea de tratamiento biológico por bombeo.

2. Línea de fangos

- Arqueta de fangos: existe una arqueta de recepción de fangos desde donde se envían al espesador mediante bombeo.
- Espesado: existe un espesador estático por gravedad, prefabricado, con válvula de purga automática que envía el fango espesado al depósito.
- Depósito de almacenamiento de fangos: existen dos depósitos prefabricados enterrados. Los fangos almacenados se evacuan por extracción mediante bomba portátil y se envían a un camión cisterna.
- 3. Equipos eléctricos y control de la Estación depuradora. Los principales equipos son los siguientes:
 - Sistema de alimentación con energía solar fotovoltaica, mediante placas solares fijas, equipo de filtrado y estabilización, banco de baterías de

acumulación y equipo inversor de señal CC-CA. Aporta una potencia aproximada de 9kW.

- Cuadro General de Distribución
- Grupo electrógeno de 11kVA de emergencia y cuadro de conmutación automático, para alimentación de socorro cuando la solar es insuficiente.
- PLC de control general, PLC de instrumentación y PLC para gestión energética y conmutación a grupo electrógeno.

4. Servicios auxiliares

Red de agua potable

2.3 CONDICIONANTES CONSTRUCTIVOS

2.3.1 GEOLOGÍA Y GEOTECNIA

Se ha realizado un estudio para caracterizar los parámetros geotécnicos que condicionarán la ejecución de las obras. En el Anejo nº 3.- Estudio geológico y geotécnico, se incluye un ejemplar del Estudio realizado por la empresa INTEINCO.

Las conclusiones y recomendaciones principales de dicho estudio son las siguientes:

- 1. El reconocimiento del terreno en la parcela de la E.D.A.R. presenta los siguientes niveles:
 - Rellenos superficiales. Aparecen el sondeo 3, más próximo al Arroyo de Rodajos, estos suelos arenosos muy alterados con un espeso de aproximadamente 1 m, los cuales parecen consecuencia de las obras de construcción de la propia E.D.A.R.
 - Arenas algo arcillosas con cantos. Aparecen superficialmente en el Sondeo 2 y bajo los rellenos del Sondeo S3, no apreciándose en el Sondeo 1. Son suelos arenosos con algunos cantos, procedentes aparentemente de la alteración del granito, pudiendo tratarse al no apreciarse la estructura de la roca, de suelos redepositados. Presenta un espesor en torno a 1 m.
 - Suelo residual de granito o jabre: Suelo arenosos, algo arcilloso y con gravas o cantos graníticos, procedente de la meteorización de la roca base

y mantiene una gran compacidad. Su espesor es variable, alcanzando 1,55 m en el Sondeo 1, 2,90 m en el Sondeo 2 y hasta más de 5 m en el Sondeo 3.

- Roca granítica muy fracturada. Roca de grano medio-grueso. Que presenta localmente pequeñas zonas de alteración ligadas normalmente a las fracturas. Aparece bajo el suelo residual en los Sondeos 1 y 2, no apreciándose en el Sondeo 3.
- 2. Se ha detectado la presencia de agua en los Sondeos 1 y 2 en torno a los 2,70 m, mientras que en el Sondeo 3, más bajo y próximo al arroyo se detectó en el fondo del mismo y a bastante menor cota (772,7).
- 3. Para la ejecución de las obras, que afectarán principalmente al nivel superior, pueden realizarse excavaciones con medios convencionales en los niveles de suelos y con medios específicos de excavación en roca para este sustrato. Se consideran taludes en torno al 1 H:1 V en los rellenos y las arenas con cantos, del orden de 1 H : 3 V en los niveles de jabre y taludes subverticales en la roca. Los suelos procedentes de la excavación se pueden considerar como suelos "adecuados" en base a los criterios del PG-3.
- 4. Son factibles las cimentaciones directas por zapatas, losas o zapatas corridas. Recomendando presiones admisibles de 1,7 kp/cm² para apoyo sobre arenas con cantos y 2,30 kp/cm² para el nivel del jabre.
- 5. Ni el agua detectada ni los suelos contienen elementos que supongan problemas de agresividad a los hormigones de cimentación, de acuerdo con los criterios de la Instrucción EHE-08, por lo que no será necesario tomar medidas en este sentido.

2.3.2 TOPOGRAFÍA

En el Anejo nº 2.- Cartografía y Topografía se incluye el levantamiento efectuado por la empresa Norte Topografía de la parcela actual de la E.D.A.R. y del trazado que recorrerá la línea de acometida eléctrica desde el punto de conexión propuesta por lberdrola por el casco urbano de Valdemaqueda y por el camino hasta la E.D.A.R.

2.3.3 HIDROLOGIA

En el Anejo nº 22 se incluye un estudio hidrológico e hidráulico cuyo objeto es la justificación de la no afección de riesgos graves de inundación a las instalaciones de la E.D.A.R. de Valdemaqueda por parte del Arroyo de Rodajos.

Las conclusiones más importantes del estudio son las siguientes:

- En el estudio se ha considerado la cuenca del arroyo de Rodajos, de unos 9,38 Km² de extensión. Se trata de una zona perteneciente a las estribaciones de la Sierra de Guadarrama, en la que las cuencas se encuentran muy meteorizadas, de ahí su escasa superficie.
- Los caudales obtenidos para los principales periodos de retorno han sido los siguientes:

T (años)	Qmax (m ³ /s)
5 (DPH)	24,08
100	67,30
500	96,97

Con los caudales obtenidos se realizó una modelización hidráulica del cauce del arroyo de Rodajos, obteniendo la potencial extensión del Dominio Público Hidráulico (asimilado el periodo de retorno de 5 años a la avenida ordinaria del arroyo), su zona de servidumbre asociada, así como las potenciales llanuras de inundación para los periodos de retorno de 5, 10, 25, 50, 100 y 500 años.

2.3.4 PUNTOS DE CONEXIÓN

Se establecen los siguientes puntos de conexión:

Acometida eléctrica

En la actualidad, la E.D.A.R. de Valdemaqueda no dispone de acometida eléctrica, pues se autoabastece mediante una instalación de generación de energía solar fotovoltaica, como fuente principal, y un pequeño motogenerador de gasoil de socorro.

Como uno de los puntos principales de este proyecto, se dotará a la E.D.A.R. de nueva instalación de suministro eléctrico en baja tensión, para lo que se ha previsto un nuevo punto de entronque de energía eléctrica.

Como dicha red de suministro no se encuentra en los alrededores de la EDAR, este proyecto incluye la ejecución de una nueva acometida subterránea de alta tensión y un centro de transformación (que pasarán a ser propiedad Compañía tras su ejecución), que repartirá la energía en BT a los diferentes clientes interesados, entre ellos la EDAR Valdemaqueda.

Se han iniciado los trámites correspondientes con la compañía distribuidora para petición de condiciones de nuevo suministro, generando el expediente nº 9033241437, donde se ha propuesto un punto de conexión dentro del casco urbano de Valdemaqueda, en concreto en la avenida Puente Romano, a la tensión de 20.000V.

Se realizará la conexión en una red subterránea de media tensión existente, propiedad de la compañía distribuidora Iberdrola, donde se efectuará un entronque subterráneo con entrada-salida en el punto indicado. Desde ahí, se ejecutará una nueva línea subterránea de acometida hasta el CT Compañía, en las inmediaciones de la E.D.A.R. de aproximadamente 1200m.

o Camino de acceso

El acceso actual a la E.D.A.R. se realiza por un camino de tierras, siendo éste el denominado camino de Valdemaqueda a Villaescusa.

Dicho acceso se encuentra en buenas condiciones y el acceso a la planta se mantendrá de la misma forma que se realiza en la actualidad.

Solo si fuese necesario, al final de las obras, se realizará una reposición de las posibles afecciones que puedan surgir.

Agua potable

La acometida de agua potable a la E.D.A.R. se mantendrá de la misma forma que se realiza en la actualidad, a través de una conducción que llega a la planta enterrada por el camino de Valdemaqueda a Villaescusa, que da acceso a la misma. En el interior de la parcela a se distribuye a los distintos puntos interiores de consumo.

La red de distribución de agua potable interior se ampliará al menos hasta el nuevo edificio eléctrico.

o Llegada de agua bruta a la E.D.A.R.

En la actualidad la E.D.A.R. recibe por gravedad aguas residuales por un colector que discurre por un camino contiguo al Arroyo de Rodajos, al margen opuesto del Camino de Valdemaqueda a Villaescusa.

La entrada del agua bruta se mantendrá de la misma forma en la que se realiza en la actualidad, por el lado norte de la parcela.

Debido a que no se produce un incremento en la capacidad de tratamiento de la planta, no se considera necesario ampliar o modificar el colector de entrada.

2.3.5 CONDICIONANTES AMBIENTALES

Las actuaciones contempladas en el presente proyecto, quedan incluidas en el Lugar de Importancia Comunitaria (LIC) "Cuencas de los ríos Alberche y Cofío" y la Zona Especial de Protección para las Aves (ZEPA) "Encinares de los ríos Alberche y Cofío", tal y como se muestra en la imagen inferior.

Fuente: Cartografía Ambiental de Madrid

Por ello, y a la vista de su ubicación en espacios de la Red Natura, se inició el procedimiento de consulta al órgano ambiental competente con vistas a que éste determinase si el proyecto debía someterse al procedimiento de evaluación ambiental recogido en la normativa ambiental vigente (Ley 2/2002 de 19 de junio de Evaluación Ambiental de la Comunidad de Madrid, Ley 21/2013 de 9 de diciembre de evaluación ambiental).

Posteriormente (13 de junio de 2015) se recibió informe de la Dirección General del Medio Ambiente indicando que no era necesario someter al proyecto a tramitación

ambiental, siempre y cuando se contase con informe favorable de la Dirección General de Patrimonio Cultural.

Este se había recibido anteriormente con fecha 29 de febrero de 2016, indicando que no existía inconveniente, desde el punto de vista del patrimonio histórico, para la realización de la actuación proyectada.

Es por ello que no es necesaria tramitación según la Ley 21/2013 de evaluación ambiental.

3.-DESCRIPCIÓN DE LA SOLUCIÓN ADOPTADA

3.1 ACOMETIDA ELECTRICA

3.1.1 SISTEMA DE ABASTECIMIENTO ELÉCTRICO ACTUAL

La estación depuradora se encuentra actualmente aislada de la red eléctrica, y se alimenta eléctricamente a través de un conjunto de 314 módulos fotovoltaicos, distribuidos a lo largo de 4 grupos sobre una estructura metálica fija:

- 1º Grupo: 116 unidades fotovoltaicas.
- 2º Grupo: 96 unidades fotovoltaicas.
- 3º Grupo: 84 unidades fotovoltaicas.
- 4º Grupo: 18 unidades fotovoltaicas.

Debido a la poca potencia requerida por los motores del proceso de tratamiento actual, el sistema de energía solar es suficiente para su alimentación.

La energía obtenida en las placas solares pasa por un proceso de filtrado y corrección mediante un módulo cc-cc montado en un cuadro eléctrico, que se ubica en la cámara

existente bajo el tratamiento biológico (biodiscos). Una vez filtrada y estabilizada, la energía se almacena en 144 elementos (baterías) de 2V, 1850Ah/100h de tecnología plomo-acido, fabricados por BP Solar, que se distribuyen en tres bancadas de cuatro filas y 12 elementos por fila.

Las baterías están conectadas de forma que la tensión de continua es de 48 voltios.

Conectado a la salida de las bancadas, encontramos el inversor CC-CA situado contiguo a las baterías, de la marca Logibai S.A.

Una vez que la electricidad está transformada de 48 C.C. a 380 C.A. se procede a su distribución a los motores de la EDAR de Valdemaqueda.

En el supuesto caso de que las baterías estuvieran descargadas o inutilizadas por algún problema técnico, se dispone de un cuadro de conmutación automático para posibilitar la entrada de una fuente de alimentación auxiliar, en el caso dado, de un grupo electrógeno existente en la parcela de 11kVA y así no interrumpir el proceso de depuración.

Todo el control del sistema de carga y descarga de baterías, medida de voltajes y niveles de carga, además de la posible señal de arranque y conmutación del grupo electrógeno, es controlado por un PLC situado en la misma sala, en un cuadro eléctrico situado en la pared.

3.1.2 DISTRIBUCIÓN ELÉCTRICA DE BAJA TENSIÓN

La distribución eléctrica de la planta se realiza desde el Cuadro de Distribución, situado en el pequeño edificio ubicado a la derecha del acceso a la parcela. Éste cuadro está conectado a la salida del cuadro de conmutación citado anteriormente, por lo que siempre se encuentra alimentado, independientemente sea de la fuente solar o del grupo electrógeno. En su interior se encuentra la aparamenta de protección y control de motores, desde donde arrancan todas las líneas de alimentación a éstos y a los cuadros locales distribuidos por la planta.

El sistema de control de todo el proceso se realiza comandado por un PLC instalado en un cuadro exclusivo junto al Cuadro de Distribución, en la misma sala.

3.1.3 CONDICIONANTES PREVIOS SOBRE LA ACOMETIDA

El objetivo inicial acerca de la acometida, era definir las actuaciones para realizar las obras de conexión a la red de M.T. mediante línea subterránea (mixta compañía-privada), centro de seccionamiento y centro de transformación privado Canal Gestión para dotar de energía en MT a la EDAR de Valdemaqueda de forma individual.

Por petición expresa del Ayto. del Valdemaqueda, y con la finalidad de <u>dar servicio</u> <u>eléctrico a terceros clientes interesados</u>, se ha llegado a un acuerdo junto a Iberdrola y Canal Isabel II Gestión SA, por el que se abre un nuevo expediente de condiciones de suministro con la compañía eléctrica.

Con esta nueva casuística, la línea de media tensión llegará hasta una parcela cercana a la EDAR donde se instalará un Centro de Transformación (CT). Tanto la línea en media tensión hasta ese punto y el CT serán propiedad de la compañía eléctrica. Desde el centro de transformación lberdrola distribuirá en baja tensión tanto a la EDAR como al resto de clientes interesados de las parcelas cercanas.

3.1.4 <u>ACTUACIONES A REALIZAR</u>

Como punto principal del proyecto, se procede a sustituir el actual sistema de alimentación eléctrica de la EDAR mediante placas solares, por una conexión con la

red eléctrica en BT alimentada desde un nuevo CT conectado a la red de media tensión a través de línea subterranea.

En el primer momento de la redacción del presente proyecto (para la situación inical de acometida) se tuvo respuesta de Carta de Condiciones técnico económicas de Suministro por parte de la distribuidora eléctrica IBERDROLA, obteniéndose una ubicación para el punto de entronque con su RSMT, generándose el expediente número 9032024571, con fecha de apertura 29/07/2015. Se abonó a la compañía distribuidora la cantidad de 3.194,85 + IVA, en concepto de derechos de supervisión de instalaciones cedidas y trabajos en la red subterránea de media tensión, aunque dicho importe va a ser devuelto a Canal Gestión por la nulidad del expediente referido. Tras el nuevo escenario surgido, dicho expediente pasa a ser actualizado por otro.

A partir del acuerdo llegado con el Ayto. de Valdemaqueda, cambia el planteamiento inicial de acometida eléctrica, por lo que se tiene una nueva carta de condiciones de suministro de Iberdrola manteniendo la ubicación para el entronque con su RSMT, generándose un nuevo expediente número 9033241437, con fecha de apertura 24/05/2016. Canal Gestión está en vías de abonar la cantidad de 1.187,16€+IVA como aceptación de las nuevas condiciones de suministro, por lo que desde el momento en el que el pago se haga efectivo se asegurará la reserva de potencia solicitada

El punto de entronque se integra en pleno núcleo urbano, y se debe realizar una extensión de la línea de distribución subterránea de Media Tensión de longitud aproximada 1200m, mediante circuitos de entrada-salida (doble circuito). El conductor a emplear debe ser HEPRZ1 Al 3(1x240)mm².

3.1.4.1 Centro de transformación

Como punto de entrega de energía en baja tensión, se instalará un nuevo centro de transformación a las afueras de la parcela de la EDAR. Dicho centro es propiedad exclusiva de Iberdrola (compañía). Este centro se instalará en un edificio de hormigón prefabricado.

Los elementos que componen el CT son:

- Unidad compacta RM6 con dos posiciones de línea motorizadas más una de protección (2L+P), con resistencia al arco interno 16kA 0.5seg, y con cajón de automatización Iberdrola (STAR), con las siguientes funciones:
 - Cabina de entrada con Interruptor Seccionador de línea en SF6.

- Cabina de salida con Interruptor Seccionador de línea en SF6.
- Cabina con Interruptor Seccionador pasante en SF6.
- Cabina de remonte con sistema de puesta a tierra.
- Cabina de protección general mediante ruptofusible, con interruptor seccionador en SF6 con bobina de apertura mando motorizado, señalización de fusión, indicadores de presencia y enclavamientos.
- 1 ud. transformador de potencia 400kVA en baño de aceite mineral ONAN, con relación de transformación 20/0.42kV. Protección mediante termómetro.
- Cuadro de distribución en baja tensión con seccionador vertical 3P+N, con 5 salidas.
- Fuente de alimentación asegurada: se equipa un equipo rectificador de corriente continua dotado de baterías para el accionamiento eléctrico y para los circuitos de maniobra de los equipos de alta tensión.

Dispondrá de concentradores de datos de medida necesarios, un equipo de comunicaciones, antena para comunicaciones 3G y fuente de alimentación asegurada para dar servicio al mando motorizado así como los diversos relés de protección.

Instalación de puesta a tierra

El centro de transformación dispone de sistemas de puesta a tierra, cuyos parámetros (resistencia de difusión, tensiones de paso y contacto) deberán ser medidos una vez instalado con objeto de comprobar su correcta ejecución. El diseño de las redes de tierra se realizará de acuerdo con la instrucción técnica complementaria MIE-RAT 13 del vigente Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación.

También cumple con lo prescrito en el capítulo 11 de la Instrucción Técnica Complementaria ITC-BT-18 del Reglamento Electrotécnico para Baja Tensión aprobado por Real Decreto 842/2.002.

3.1.4.2 Distribución en baja tensión

Desde el Cuadro de Distribución del CT Iberdrola se alimentará el nuevo Cuadro General de Baja Tensión, que se ubicará en la sala eléctrica en el edificio de control, cuadros y soplantes de obra civil en la parcela de la EDAR, junto al tratamiento biológico.

El circuito a emplear para la red de distribución (75m) que acaba en la caja general de protección y medida junto al acceso a la planta, está compuesto por conductor XZ1(S) Al 0,6/1 kV 3x(1x240)+1x150mm² y la derivación individual de 100m hasta el C.G.B.T. en el interior de la planta, estará compuesta por tres conductores unipolares RZ1-k Cu 0,6/1kV 3x(1x150)+1x150mm².

3.2 ACTUACIONES EN LA PLANTA DEPURADORA

3.2.1 INSTALACIONES ELÉCTRICAS

Como la entrega de energía se realiza en baja tensión, las instalaciones eléctricas a realizar en el interior de la EDAR comienzan desde el Cuadro General de Baja Tensión, que recibirá la acometida de alimentación, desde el cuadro general de protección y medida homologado por Compañía ubicado junto a la puerta de acceso a la planta.

3.2.1.1 Cuadro General de Baja Tensión

Debido a que el actual Cuadro General de Distribución no es apto para afrontar una ampliación de potencia, se ha previsto un nuevo Cuadro General de Baja Tensión en sustitución del existente, que recibirá la alimentación desde la red de distribución en BT de Iberdrola y alimentará todos los actuadores de la planta. Al tratarse de una planta de tratamiento de pequeño tamaño, se ha optado por unificar en un único cuadro tanto la distribución como la alimentación y control de motores, por tanto hace las veces de CGD y CCM.

El nuevo Cuadro General de Baja Tensión se ajusta a lo especificado ambas fichas técnicas E.T. 3301 y E.T. 3311 y el Pliego de Bases Generales.

A continuación se describen las características principales a verificar por el Cuadro General de Baja Tensión.

Tendrá dos entradas de alimentación (una desde la red de distribución BT y otra desde grupo electrógeno eventual) que se montarán en el extremo del cuadro. Dichas entradas estarán enclavadas manualmente según se representa en el plano EE-02. Estarán montadas sobre carros extraíbles.

Desde las entradas se alimenta al embarrado general al que están conectadas las salidas que alimentarán a todos los motores de la instalación, a la batería de condensadores automática y al cuadro general de alumbrado y servicios auxiliares.

Composición del nuevo Cuadro General de Baja Tensión:

Entradas:

- 1 Ud de 250A 4P 36kA extraíble para la acometida.
- 1 Ud de 250A 4P para la conexión eventual de un grupo electrógeno de alquiler.

Salidas:

- Todas las definidas en esquema eléctrico EE-02 para los motores de la instalación, con los tipos de arranque indicados.
- 1 Ud. de 63 A (IV) para el Cuadro General de alumbrado y servicios.
- 1 Ud. de 63 A (III) para la batería automática de compensación de energía reactiva

Se ha previsto la instalación de un armario aparte para albergar los dispositivos de electrónica de potencia (variadores y arrancadores). Además, la sala eléctrica contará con un sistema de ventilación forzada contralada de forma automática por termostato.

3.2.1.2 Cuadros auxiliares

Se instalarán los siguientes cuadros auxiliares o secundarios:

- Cuadros de protección y mando de alumbrados y tomas de corrientes/usos: el cuadro general se ubicará en el interior de la sala eléctrica asociada al nuevo edificio. Desde ese cuadro se procederá a realizar la protección y control del nuevo alumbrado exterior así como a alimentar los cuadros secundarios de tomas industriales y los cuadro secundarios de alumbrado y del tratamiento biológico.
- Cuadro de tomas industriales: se colocará en la sala de futuras soplantes e incorparará tomas de enchufes monofásicas y trifásicas de 16 y 32A. Verificará los requisitos de la ficha E.T. 3325 "Cuadro de bases de enchufe".

3.2.1.3 Motores eléctricos

Los nuevos motores a instalar se ajustarán a las prescripciones técnicas contenidas en la ficha ET 3401 (Motores Eléctricos) y el Pliego de Bases Generales.

3.2.1.4 Cableado de fuerza y maniobra

Se verificará lo indicado en el Pliego de Bases Generales.

Todo el cableado asociado tanto a cargas como a cuadros que queden fuera de servicio, se retirará. El asociado a los motores que se mantienen en servicio tras las obras de mejora, será sustituido por nuevos elementos (tanto cableado como canalizaciones).

En el Anejo n º7 se encuentran los cálculos de diseño de los conductores empleados.

3.2.1.5 Instalación de alumbrado exterior

La planta actual no dispone de equipos de alumbrado exterior.

Se prevé la instalación de columnas de alumbrado de 8m con luminarias tipo vial de LED 100W para iluminar el perímetro de los actuales pretratamiento y tratamiento biológico. Para la iluminación perimetral del edificio de transformación se prevé la instalación de brazos murales de 1,5m adosados a fachada, con luminarias LED de 100W.

El control de encendido de todo el alumbrado exterior se realizará desde el cuadro general de alumbrado y servicios, que contendrá en su interior los componentes descritos en el PBG.

3.2.1.6 Alumbrado en interiores

Actualmente la E.D.A.R. dispone de alumbrado interior en el pequeño edificio de servicios y la zona bajo el tratamiento biológico con cuadro local propio. Se dotará de alumbrado a todas las salas del nuevo edificio.

En cada edificio se montará un cuadro prefabricado de primera calidad, a base de acero laminado y con puerta que pueda montarse a ambas manos. Se ha considerado la instalación de cuadro local para: edificio de soplantes, control y sala eléctrica. Cumplirá requisitos descritos en PBG.

Para el diseño del alumbrado de interiores se han empleado luminarias de tipo estanco IP66 a base de lámparas fluorescentes 2x36W. Las luminarias son del tipo de alto factor de potencia. Se distribuyen en diferentes encendidos para adecuar su actuación a las diferentes condiciones lumínicas. El encendido es del tipo manual mediante la ubicación de interruptores simples en los accesos a las mismas.

De igual modo se ha previsto la instalación de equipos autónomos de emergencia de duración 1 hora para alumbrar las vías de evacuación, puertas asociadas y medios de protección contra incendios en caso de falta del suministro normal.

3.2.1.7 Equipos de medición de energía eléctrica

La medida de energía eléctrica se realizará en baja tensión y se ubicará en el Cuadro de Protección y Medida homologado a instalar junto a la puerta de acceso de la planta, accesible desde la vía pública. Se verificarán todas las prescripciones exigidas por la Compañía Distribuidora.

El adjudicatario estudiará el contrato eléctrico a aplicar en el momento en que se vaya a realizar debido a que las tarifas eléctricas están en continuo cambio y no se pueden determinar a priori.

3.2.1.8 Equipo de compensación de energía reactiva

En las nuevas instalaciones se montará un equipo de corrección de energía reactiva:

Batería automática con condensadores secos autorregenerables con resistencia rápida de descarga, contactores para cargas capacitivas y protecciones individuales con fusible y general con interruptor automático térmico, con una capacidad de 25kVAr capaz de conseguir un coseno fi igual a la unidad.

La tensión nominal de los condensadores será de 440 V. Si la suma de potencias generadoras de armónicos sobrepasa el 25% de la potencia del transformador de potencia, los condensadores serán de 480 V y se instalarán las correspondientes inductancias antiarmónicos.

3.2.1.9 Instalación general de tierra

La ampliación de la red general de tierras se ha diseñado a base de conductores de cobre desnudo de 50 mm2 que se tienden perimetralmente alrededor de las estructuras principales de los nuevos elementos, unidos mediante soldadura

aluminotérmica en diversos puntos a picas de acero - cobre de 2 m de longitud y 14 mm de diámetro, ubicándose en pozos dispuestos para este fin, ejecutándose éstos preferentemente en las inmediaciones de cada armario o receptor importante. Estas redes de tierras también se unen mediante soldadura aluminotérmica a los hierros principales de cada estructura.

Se prevé una partida para el cambio de ubicación del pararrayos actual a otra más adecuada según la nueva implantación.

El diseño del sistema y los materiales verifica las prescripciones de la ET 3501 (Tierra de Utilización) y el Pliego de Bases Generales.

La nueva red de tierras será conectada con la existente en la planta, mejorando así la resistencia equivalente del conjunto de la instalación.

3.2.2 SISTEMA DE CONTROL

En la actualidad la planta depuradora dispone de una automatización completa de sus instalaciones, que gestiona el funcionamiento autónomo de los procesos tanto de depuración como de gestión energética.

En concreto, existe un PLC de control encargado del proceso y un PLC para instrumentación ubicados ambos en el pequeño edificio de servicios junto a la entrada de la planta; y otro PLC de gestión energética encargado de las variables eléctricas del sistema fotovoltaico, en la cámara bajo el tratamiento biológico.

En este proyecto, se sustituirán los PLC de control e instrumentación por otro Cuadro de Control, según ET 4102, asociado al nuevo Cuadro General de Baja Tensión. El PLC de gestión energética será desmantelado, puesto que se elimina el sistema de alimentación mediante placas solares. Toda la instrumentación actual y el cuadro de control de tratamiento biológico por biodiscos serán conectados al nuevo PLC, de tal forma que todo quede integrado en un único sistema de control.

El seguimiento, control y proceso de la EDAR estará gobernado por el autómata programable citado anteriormente, que recogerá el estado de las señales digitales y analógicas procedentes de los equipos e instrumentos de la planta, procesará las instrucciones de acuerdo con lo establecido en el programa de usuario y generará las salidas de proceso adecuadas.

3.2.2.1 Instrumentación

Las obras de mejora de instalaciones eléctricas del presente proyecto no contemplan nuevos procesos de tratamiento que pudieran requerir automatismo, ni renovación de instrumentación existente.

Por tanto en este apartado, cabe señalar que se procederá a la migración de toda la instrumentación existente del proceso actual al nuevo PLC (control de caudal de agua tratada, control de niveles analógicos en decantación y tratamiento biológico, etc.), para que sea éste el que gestione toda la información.

Se contempla en presupuesto el cableado necesario para migrar el destino de las señales de los medidores actuales al nuevo PLC.

3.2.3 EDIFICIO ELÉCTRICO, CONTROL Y SOPLANTES

Se ejecutará un nuevo edificio al oeste de la parcela que albergará la sala de cuadros eléctricos, sala de control, aseo, almacén y una sala para las futuras soplantes.

Es un edificio de construcción in-situ, mediante bloque de hormigón con revestimiento exterior de cotegran. Dispone de dos zonas, identificables por su altura: una con altura interior libre de 4m (4,95m altura total) donde irán instaladas las futuras soplantes de la ampliación del proceso de tratamiento, y otra zona de altura interior libre 3m (3,85m altura total) para el resto de salas eléctricas, almacén y de control.

Estará rodeado por una acera perimetral de 1,2m que da acceso a todas las puertas del edificio, y un vial lateral para dar acceso a vehículos a la sala del almacén.

El edificio cuenta con las siguientes salas:

- Sala para almacén de 11m²
- Sala de cuadros eléctricos de 44,5m²
- Zona de control: despacho de control y aseo de 18m² en conjunto.
- Sala de soplantes de 43m². En este proyecto quedará para que a futuro se instalen en ella las soplantes de desemulsionado y tratamiento biológico, el polipasto y el grupo de aire industrial. Las instalaciones eléctricas (iluminación y tomas de fuerza) y los extractores quedarán ya equipados en este proyecto.

Por razones de estandarización, todas las puertas del nuevo edificio se abrirán con la misma llave inteligente con la que se abre el edificio de control actual. Se han presupuestado juegos de llaves y bombines electrónicos indicados para esta función.

3.3 ACTUACIONES AMBIENTALES

Se ha incluido en el presupuesto del proyecto una partida para la ejecución de medidas ambientales genéricas que pudiesen ser necesarias poner en práctica durante la ejecución de las obras, tales como:

- Riego de caminos y superficies pulverulentas.
- Jalonado de especies vegetales de especial interés en el entorno de las obras.
- Establecimiento de barreras antivertidos o derrames.
- o Reposiciones vegetales.
- Honorarios de técnico que realice la vigilancia ambiental de las obras.
- o Etc.

Por su parte, el informe de la Dirección General del Medio Ambiente de fecha 13 de junio de 2016, que señala que no es necesario someter el proyecto a procedimiento de evaluación ambiental según la Ley 21/2013, no indica medidas ambientales adicionales a aplicar.

4.-PLAN DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN

A partir de la entrada en vigor del Real Decreto 105/2008 de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición, se hace necesaria la inclusión de un estudio de la gestión de los residuos de construcción y demolición en este tipo de obras, con un contenido mínimo, que es el siguiente:

- Una estimación de la cantidad, expresada en toneladas y metros cúbicos, de los residuos de construcción y demolición que se generarán en la obra, codificados con arreglo a la lista europea de residuos publicada por Orden MAM/304/2002, de 8 de febrero.
- Las medidas para la prevención de residuos en la obra objeto del proyecto.

- Las operaciones de reutilización, valorización o eliminación a que se destinarán los residuos que se generarán en la obra.
- Las medidas para la separación de los residuos en obra.
- Los planos de las instalaciones previstas para el almacenamiento, manejo, separación y, en su caso, otras operaciones de gestión de los residuos de construcción y demolición dentro de la obra.
- Las prescripciones del Pliego de Prescripciones en relación con el almacenamiento, manejo, separación, y otras.
- Una valoración del coste previsto de la gestión de los residuos de construcción y demolición.

Tanto la estimación del volumen de producción de residuos, como el coste previsto para su gestión se encuentran reflejados en el Anejo nº 13.- Plan de Gestión de Residuos de este proyecto. Este precio se encuentra también considerado en el Presupuesto General del Proyecto.

5.-INTERFERENCIAS A LA EXPLOTACIÓN DURANTE LA EJECUCIÓN DE LAS OBRAS

Tal y como se puede concluir, las nuevas actuaciones que se describen en este proyecto afectarán al funcionamiento de la E.D.A.R. actual del siguiente modo:

- Para construir el nuevo edificio de soplantes, cuadros eléctricos y control, es necesario desmantelar los paneles solares que abastecen al sistema eléctrico de la planta.
- Para ejecutar la nueva acometida eléctrica subterránea de media tensión y el centro de transformación, no es necesario afectar a las instalaciones de depuración existentes.
- Para alimentar los motores existentes desde el nuevo cuadro, se deberá desconectar uno a uno, su alimentación actual y poner en servicio la nueva.

Con el objeto de mantener en todo momento la continuidad del servicio de la EDAR, y reducir en lo posible la repercusión de las nuevas actuaciones, se describen a continuación las actuaciones concretas que se han previsto en el presente proyecto.

Todos los motores de la planta actual se alimentan desde el cuadro eléctrico de Distribución -o bien desde cuadros locales en campo alimentados desde éste-, que se sitúa en el pequeño edificio de servicios. A su vez, el cuadro eléctrico recibe alimentación desde un sistema solar fotovoltaico, o bien desde un grupo electrógeno de socorro para cuando el primero no resulta suficiente.

Este proyecto contempla, tanto el cambio de sistema de alimentación a red eléctrica de baja tensión, como la sustitución del cuadro de Distribución por un nuevo Cuadro General de Baja Tensión, a instalar en la nueva sala eléctrica. Se describe a continuación la secuencia para que la migración de la alimentación produzca las menores interferencias posibles en el funcionamiento de la EDAR.

- 1) Construcción de la nueva acometida eléctrica de media tensión subterránea, desde el punto de conexión hasta la EDAR, y del nuevo edificio de transformación (se entrega equipado con celdas y transformador).
- 2) Sustitución de la alimentación eléctrica fotovoltaica por un grupo electrógeno de alquiler, y posterior desmontaje y retirada de paneles solares para liberar el espacio necesario para el siguiente punto.
- 3) Construcción del nuevo edificio de soplantes, sala eléctrica, control y almacén.
- 4) Acopio e instalación de equipamiento eléctrico (cuadros eléctricos, cableados, automatización, etc.), instalación de canalizaciones y tendido de cableados (un extremo estará conectado al nuevo cuadro eléctrico y el otro se dejará preparado al lado del motor que alimentará).
- 5) Puesta en marcha del centro de transformación, que energiza el nuevo Cuadro General de Baja Tensión.
- 6) Migración progresiva de cableados que alimentan los motores: uno a uno, se desconectarán los cables antiguos que alimentan los motores y cuadros locales, y se conectarán los nuevos cableados preparados en el punto nº4. Cuando todas las cargan estén alimentadas desde el nuevo sistema eléctrico, se procederá a la deconexión del grupo electrógeno de alquiler.
- 7) Desmantelado del antiguo sistema de distribución eléctrica (baterías y cuadros eléctricos del sistema fotovoltaico, grupo electrógeno de socorro, cuadros, cableados, etc.)

Según la anterior secuencia de ejecución, la EDAR se sigue alimentando desde su sistema solar fotovoltaico hasta el paso nº2.

Se prevé un grupo electrógeno de 30kVA de alquiler, que cubre el consumo de los motores actuales y permite alimentar cuadros auxiliares de obra, durante las fases constructivas del nuevo edificio y acopio e instalación del nuevo sistema eléctrico.

De esta forma se produce en los motores la mínima interferencia posible, desconectándolos solo el tiempo necesario para soltar los cables antiguos y conectar los de alimentación desde el nuevo sistema eléctrico.

En el capítulo 3.- Afecciones al funcionamiento de la EDAR, del documento nº 4.-Presupuesto se han valorado el coste económico de estas actuaciones.

6.-TRAMITACIONES Y LEGALIZACIONES

Se incluye en el capítulo 9 del Presupuesto los costes de todas las tramitaciones y legalizaciones que deberá realizar el Contratista adjudicatario de las obras ante los Organismos competentes y Compañía suministradora.

7.-DOCUMENTOS DE QUE CONSTA EL PRESENTE PROYECTO

El presente proyecto consta de los siguientes documentos:

Documento nº 1. Memoria y Anejos

Memoria

Anejos

- Anejo nº 1. Características principales del proyecto
- Anejo nº 2. Cartografía y topografía
- Anejo nº 3. Estudio geológico y geotécnico
- Anejo nº 4. Tramitación ambiental y arqueológica
- Anejo nº 6. Media tensión y centro de transformación
- Anejo nº 7. Cálculos eléctricos de baja tensión
- Anejo nº 8. Instrumentación y control

- Anejo nº 9. Trazado y replanteo
- Anejo nº 10. Estudio de expropiaciones
- Anejo nº 11. Conexiones exteriores, servicios afectados y consultas
- Anejo nº 12. Autorizaciones Administrativas necesarias
- Anejo nº 13. Plan de Gestión de Residuos
- Anejo nº 14. Documentación a entregar por el contratista
- Anejo nº 15. Señalización corporativa para instalaciones de Canal de Isabel II
 Gestión S.A.
- Anejo nº 17. Medidas de prevención y seguridad en las instalaciones de Canal de Isabel II Gestión S.A.
- Anejo nº 18. Relaciones del contratista con la dirección de obra
- Anejo nº 19. Control de calidad de las obras
- Anejo nº 20. Justificación de precios
- Anejo nº 21. Plan de Obra
- Anejo nº 22. Estudio de Inundabilidad del arroyo de Rodajos a su paso por la E.D.A.R. de Valdemaqueda

Documento nº 2. Planos

Documento nº 3. Pliego de Prescripciones Técnicas

- A) Pliego de Prescripciones Técnicas Generales
- B) Pliego de Prescripciones Técnicas Particulares
- C) Especificaciones Técnicas

Documento nº 4. Presupuesto

Mediciones

Cuadro de Precios nº 1

Cuadro de Precios nº 2

Presupuestos Parciales

Presupuestos Generales

8.-CLASIFICACIÓN DEL CONTRATISTA

De acuerdo al artículo 36.- Exigencia de Clasificación por la Administración del RGLCAP, la clasificación que los órganos de contratación exijan a los licitadores de un contrato de obras será determinada con sujeción a las normas que siguen.

- En aquellas obras cuya naturaleza se corresponda con algunos de los tipos establecidos como subgrupo y no presenten singularidades diferentes a las normales y generales a su clase, se exigirá solamente la clasificación en el subgrupo genérico correspondiente.
- 2. Cuando en el caso anterior, las obras presenten singularidades no normales o generales a las de su clase y sí, en cambio, asimilables a tipos de obras correspondientes a otros subgrupos diferentes del principal, la exigencia de clasificación se extenderá también a estos subgrupos con las limitaciones siguientes:
 - a) El número de subgrupos exigibles, salvo casos excepcionales, no podrá ser superior a cuatro.
 - b) El importe de la obra parcial que por su singularidad dé lugar a la exigencia de clasificación en el subgrupo correspondiente deberá ser superior al 20 por 100 del precio total del contrato, salvo casos excepcionales

Teniendo en cuenta el presupuesto total de este proyecto, el plazo de ejecución y la naturaleza de las obras incluidas en este proyecto, se propone requerir las siguientes clasificaciones al futuro contratista:

GRUPO	SUBGRUPO	CATEGORIA
I Instalaciones eléctricas	3 Líneas de transporte	d

No obstante, será el futuro Pliego de Cláusulas Administrativas Particulares de la Licitación el que establezca definitivamente la clasificación necesaria.

9.-REVISIÓN DE PRECIOS

Dado que el plazo de ejecución propuesto en este proyecto es superior a un año, y de conformidad con lo dispuesto en el Real Decreto 1359/2011 de 7 de octubre por el que se aprueba la relación de materiales básicos y las fórmulas tipo generales de revisión de precios en los contratos de obras y de contratos de suministro de fabricación de armamento y equipamiento de las Administraciones Públicas, se propone la siguiente fórmula de revisión de precios polinómica 561: Instalaciones y conducciones de abastecimiento y saneamiento:

$$K t = 0.10 \frac{C_t}{C_0} + 0.05 \frac{E_t}{E_0} + 0.02 \frac{P_t}{P_0} + 0.08 \frac{R_t}{R_0} + 0.28 \frac{S_t}{S_0} + 0.01 \frac{T_t}{T_0} + 0.46$$

En esta fórmula los símbolos utilizados son:

- o K_t = Coeficiente teórico de revisión por el momento de la ejecución t.
- H₀ = Índice de coste de la mano de obra en la fecha de la licitación.
- H_t = Índice de coste de la mano de obra en el momento de la ejecución t.
- o E₀ = Índice de coste de la energía en la fecha de la licitación.
- E_t = Índice de coste de la energía en el momento de la ejecución t.
- C₀ = Índice de coste del cemento en la fecha de licitación.
- o C_t = Índice de coste del cemento en el momento de la ejecución t.
- S₀ = Índice de coste de materiales siderúrgicos en la fecha de licitación.
- \circ S_t = Índice de coste de materiales siderúrgicos en el momento de la ejecución t.

No obstante, será el futuro Pliego de Cláusulas Administrativas Particulares de la Licitación el que establezca definitivamente los términos de la revisión de precios.

10.- PRESUPUESTOS

Aplicando a las mediciones realizadas los precios reflejados en el Cuadro de Precios nº 1 se obtienen los diferentes Presupuestos de Ejecución Material que, afectados del

coeficiente de contrata, arrojan el presupuesto base (IVA no incluido) que a continuación se expresan:

1	ACOMETIDA ELÉCTRICA Y CENTRO DE TRANSFORMACIÓN	351.756,01 €
2	E.D.AR.	339.903,57 €
3	AFECCIONES AL FUNCIONAMIENTO DE LA EDAR	29.725,40 €
4	MEDIDAS PROTECTORAS Y CORRECTORAS AMBIENTALES Y PVA	
		7.500,00 €
5	PLAN DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN	18.284,94 €
6	VARIOS	25.415,98 €
7	SEÑALIZACIÓN CORPORATIVA	1.173,33 €
8	SEGURIDAD Y SALUD	16.472,97 €
9	REDACCIÓN DE PROYECTOS E INFORMES PARA GESTIÓN DE PERMISOS Y LICENCIAS, VISADO Y LEGALIZACIONES	
		47.000,00 €
10	PUESTA EN MARCHA	1.050,00 €

PRESUPUESTO GENERAL DE EJECUCIÓN MATERIAL	838.282,20 €
13 % de Gastos Generales	108.976,69 €
6 % de Beneficio Industrial	50.296,93 €

PRESUPUESTO BASE DE LICITACIÓN SIN IVA 997.555,82 €

Asciende el Presupuesto Base estimado de Licitación sin IVA a la expresada cantidad de:

NOVECIENTOS NOVENTA Y SIETE MIL QUINIENTOS CINCUENTA Y CINCO EUROS CON OCHENTA Y DOS CÉNTIMOS (997.555,82.-€)

11.- PLAZOS DE EJECUCIÓN Y GARANTÍA

En el Anejo nº 21 del presente proyecto, se justifican los plazos de ejecución considerados para la ejecución de las obras, proponiéndose en este proyecto una duración total de dieciocho (18) meses.

Finalizadas las obras y tras la puesta en marcha completa de la instalación, tras el Acta preceptiva de Puesta en Marcha comenzará el período de garantía.

No obstante, será el futuro Pliego de Cláusulas Administrativas Particulares el que establezca el plazo definitivo para la ejecución de las obras e instalaciones.

12.- CONCLUSIÓN

Las obras definidas en el Proyecto cumplen los requisitos exigidos en el Texto Refundido de la Ley de Contratos del Sector Público (RDL 3/2011 de 14 de Noviembre). En cumplimiento del artículo 125 del Reglamento General de la Ley de Contratos del Sector Público, se manifiesta que el presente Proyecto comprende una obra completa en el sentido exigido en el Artículo 125 del citado Reglamento (RD 1098/2001 de 12 de Octubre), ya que comprende todos y cada uno de los elementos que son precisos para la utilización de las obras, siendo susceptibles de ser entregadas al uso público.

Considerando que el presente proyecto ha sido redactado de acuerdo con las Normas Técnicas y Administrativas en vigor, y que con los documentos que integran este Proyecto se encuentran suficientemente detallados todos y cada uno de sus elementos necesarios, se somete a la consideración de la propiedad.

Madrid, Septiembre de 2016

Los Ingenieros Autores del Proyecto

Emilio Villar González

Miguel Abad Castiella

La Directora del Proyecto

V°B° Jefa de Área de Proyectos de Saneamiento y Reutilización

Ruth Ortega Cosío

María Casanova Sanjuán

ANEJO Nº 1.- CARACTERÍSTICAS PRINCIPALES DEL PROYECTO

ANEJO Nº 1.- CARACTERÍSTICAS PRINCIPALES DEL PROYECTO INDICE

1	OBJET	O DEL PROYECTO Y JUSTIFICACIÓN DE LA ACTUACIÓN	1
2	RESUM	EN DE LAS CARACTERÍSTICAS	1
3	PRINCI	PALES UNIDADES DEL PROYECTO	3
4	CLASIF	ICACIÓN DEL CONTRATISTA	3
5	PLAZO	DE EJECUCIÓN	4
6	PRESU	PUESTOS	4
	6.1	PRESUPUESTO DE EJECUCIÓN MATERIAL	4
	6.2	PRESUPUESTO BASE DE LICITACIÓN	5

1.-OBJETO DEL PROYECTO Y JUSTIFICACIÓN DE LA ACTUACIÓN

La Ley 17/1984 reguladora del Abastecimiento y Saneamiento del agua en la Comunidad de Madrid establece que los servicios de aducción y depuración son de interés de la Comunidad de Madrid, a la que corresponde la planificación general, con formulación de esquemas de infraestructuras y definición de criterios, en orden a dotar a todos sus ciudadanos de un abastecimiento con garantía de calidad y cantidad, así como de un saneamiento que minimice el impacto de los vertidos en los ríos. Estos servicios a los ciudadanos se realizan a través de Canal de Isabel II Gestión, que es la sociedad anónima responsable del ciclo integral del agua en la Comunidad de Madrid.

La gestión del saneamiento abarca el transporte de las aguas residuales a través de las redes de drenaje urbano a las estaciones depuradoras de aguas residuales (E.D.A.R.), la posterior depuración de éstas y su devolución al cauce de los ríos en condiciones óptimas. Para ello, Canal de Isabel II Gestión cuenta con un complejo sistema que consta de: redes de saneamiento y alcantarillado municipal (colectores y emisarios), estaciones de bombeo de aguas residuales, tanques de tormentas y estaciones depuradoras de aguas residuales.

La cuenca del río Cofio cuenta con ocho plantas de depuración de aguas residuales que dan servicio a: Colonias de La Estación, Las Jutas y El Pimpollar, La Hoya, La Paradilla, Las Herreras, Robledo de Chavela, Robledondo, Santa María de la Alameda y Valdemaqueda.

La planta depuradora de Valdemaqueda, situada en el término municipal del mismo nombre, es una instalación que dispone únicamente de paneles solares para el suministro de energía eléctrica.

En un futuro próximo, la planta depuradora deberá ampliarse para incrementar su capacidad de tratamiento y mejorar también la calidad de su vertido. Esta actuación necesitará de una nueva acometida eléctrica a la red.

2.-RESUMEN DE LAS CARACTERÍSTICAS

Valdemaqueda es un municipio perteneciente a la Comunidad de Madrid. Forma parte de la comarca de la Sierra Oeste, enclavada en el extremo suroccidental de la región madrileña, en el límite con Castilla y León. Linda al norte con Santa María de la

Alameda, al este con Robledo de Chavela y con Santa María de la Alameda, al sur con Robledo de Chavela y al oeste con la provincia de Ávila.

Desde una de sus calles principales, avenida Puente Romano, se llega al límite sur de la localidad donde comienza el camino de Valdemaqueda a Villaescusa. Éste camino de tierra es que conduce hasta la parcela de la EDAR, discurriendo paralelo al arroyo de Rodajos.

Valdemaqueda tiene una superficie de 52,2km², que se extienden por una zona montañosa encuadrada geológicamente en la Sierra de Guadarrama. El municipio está atravesado por el río Cofio, uno de los principales afluentes del Alberche y éste del Tajo, con lo que su término municipal pertenece a la cuenca hidrográfica de este último río. Otras corrientes fluviales son los arroyos de las Chorreras, del Hornillo, de la Puebla y de la Hoz. La altitud media de la localidad es de 872 msnm.

La localidad cuenta con un importante patrimonio ambiental, protegido legalmente mediante la inclusión de parte de su término en la ZEPA (Zona de Especial Protección de Aves) de los Pinares de Valdemaqueda.

La E.D.A.R. de Valdemaqueda, perteneciente a la cuenca del Tajo, se sitúa al sur de la población de Valdemaqueda, al oeste de la Comunidad de Madrid quedando limítrofe con Ávila. Tiene su acceso a través del camino a Villaescusa.

Por tanto, el presente proyecto define técnica y económicamente de las siguientes actuaciones:

- Ejecución y puesta en servicio de una nueva acometida eléctrica en media tensión y de un centro de transformación propiedad de la Compañía distribuidora, con potencia suficiente tanto para las instalaciones futuras de la EDAR como para otros clientes de la red de abastecimiento eléctrico. Dentro de la planta depuradora se instalarán nuevos equipos de baja tensión y alimentación a los motores existentes. Los paneles solares así como sus instalaciones auxiliares se desmontarán y se retirarán.
- Construcción de un nuevo edificio para alojar en su interior las instalaciones eléctricas, zona de control, almacén, y sala para futuras soplantes para pretratamiento y tratamiento biológico.
- Otras actuaciones menores para mejorar la explotación y mantenimiento de las instalaciones.

3.-PRINCIPALES UNIDADES DEL PROYECTO

Se adjunta a continuación un listado de las principales unidades del proyecto:

Código	<u>Um.</u>	<u>Descripción</u>	Precio	Med. Pres.	Imp. Pres.	<u>%</u>	Importe Ac.	<u>%A c</u>
84011240	MΙ	Cable de aluminio tipo HEPRZ1AL 12/20 KV de 1 x 240	22,96	7.200,000	165.312,00	19,72	165.312,00	19,72
		mm2 de sección de características de acuerdo a E.T. 3012						
83200501	Ud	Cuadro General de Baja Tensión EDAR VALDEMAQUEDA 400Vac 50kA IP54 ejecución extraible en compartimentación 4a y las siguientes salidas:- Arranque directo: 11 Ud compuestas de proteccion magnetotermica+diferencial+guardamotor+contactor Arranque mediante variador de frecuencia: 8 Ud compuesta por protección magnetotérmica+diferencial+wariador de frecuencia Alimentacion directa extraíble (tetrapolar): 3 Ud		1,000	105.883,80	12,63	271.195,80	32,35
		compuesta por protección magnetotérmica+diferencial Alimentacion directa fija tetrapolar: 1 Ud compuesta por protección magnetotérmica+diferencial Alimentacion directa fija bipolar: 2 Ud compuesta por protección magnetotérmica+diferencial.Alimentación del cuadro: acometida desde transformadores de potencia formada por dos interruptores automáticos tetrapolares de 250A 36kA, ejecución extraible, con protección magnetotérmica y diferencial, asi como analizador de redes con comunicación Ethernet a sistema de control y protector de sobretensiones tipo I. Acometida desde grupo electrógeno móvil formada ada de acuerda a la normativa del REBT y la Compañía distribuidora, incluyendo nicho según especificaciones de Compañíales derrames líquidos pastosos (ej. grasas). inclusive la mano de obra necesaria para la colocación del cartel, el extintor, la sepiolita, así como de la lámina de plástico y tornillos que suiet						
X003	m	Tubo PVC Ø160 en canalizaciones eléctricas, colocado en zanja. Según E.T. 3121.	10,22	5.727,540	58.535,46	6,98	329.731,26	39,33
X1600	Ud	Redacción de proyecto as-built de las obras e instalaciones incluidas en este proyecto de Construcción.	25.000,00	1,000	25.000,00	2,98	354.731,26	42,32
X1700	PA	Partida alzada a justificar para actuaciones imprevistas que resulten indispensables para la adecuada ejecución de la obra en los términos definidos en Pliego de Prescripciones Técnicas.	24.415,98	1,000	24.415,98	2,91	379.147,24	45,23
89100002	l	Suministro de combustible para grupos electró genos	1,38	15.680,000	21.638,40	2,58	400.785,64	47,81
U01030030	m3	Hormigón en masa HL 150/B/20 fabricado con cemento CEM II/A-P 32,5, para asiento de tubería, colocado a cualquier profundidad con espesores mínimos de 15 cm, logrando un ángulo de la cama de apoyo entre 90º a 180º, incluso compactación, curado y acabado.	78,18	240,164	18.776,02	2,24	419.561,66	50,05
82012417	Ud	Ud. Compacto de celdas gama RM6, configuración (2L+IP), resistencia al arco interno IAC AFL 16kA 0.5 seg., con cajón de automatización lberdrola (STAR), para dos funciones de línea 400 A motorizadas y una de protección, equipadas con bobina de apertura y fusibles, según memoria, con capotes cubrebornas e indicadores de tensión, instalado.	17.917,11	1,000	17.917,11	2,14	437.478,77	52,19

4.-CLASIFICACIÓN DEL CONTRATISTA

Teniendo en cuenta el presupuesto total de este proyecto, el plazo de ejecución y la naturaleza de las obras incluidas en este proyecto, se propone requerir las siguientes clasificaciones al futuro contratista:

GRUPO	SUBGRUPO	CATEGORIA
I Instalaciones eléctricas	3 Líneas de transporte	d

No obstante, será el futuro Pliego de Cláusulas Administrativas Particulares de la Licitación el que establezca definitivamente la clasificación necesaria.

5.-PLAZO DE EJECUCIÓN

En el Anejo nº 21 del presente proyecto, se justifican los plazos de ejecución considerados para la ejecución de las obras, proponiéndose en este proyecto una duración total de dieciocho (18) meses.

6.-PRESUPUESTOS

6.1 PRESUPUESTO DE EJECUCIÓN MATERIAL

Aplicando a las mediciones realizadas los precios reflejados en el Cuadro de Precios nº 1 se obtienen los diferentes Presupuestos de Ejecución Material que, afectados del coeficiente de contrata, arrojan el presupuesto base (IVA no incluido) que a continuación se expresan:

1	ACOMETIDA ELÉCTRICA Y CENTRO DE TRANSFORMACIÓN	351.756,01 €
2	E.D.AR.	339.903,57 €
3	AFECCIONES AL FUNCIONAMIENTO DE LA EDAR	29.725,40 €
4	MEDIDAS PROTECTORAS Y CORRECTORAS AMBIENTALES Y PVA	7.500,00 €
5	PLAN DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN	18.284,94 €
6	VARIOS	25.415,98 €
7	SEÑALIZACIÓN CORPORATIVA	1.173,33 €
8	SEGURIDAD Y SALUD	16.472,97 €
9	REDACCIÓN DE PROYECTOS E INFORMES PARA GESTIÓN DE PERMISOS Y LICENCIAS, VISADO Y LEGALIZACIONES	
	TERMISOS FEIGENCIAS, VIGADO FEEGALIZACIONES	47.000,00 €
10	PUESTA EN MARCHA	1.050,00 €

PRESUPUESTO GENERAL DE EJECUCIÓN MATERIAL

838.282,20 €

6.2 PRESUPUESTO BASE DE LICITACIÓN

PRESUPUESTO GENERAL DE EJECUCIÓN MATERIAL

838.282,20 €

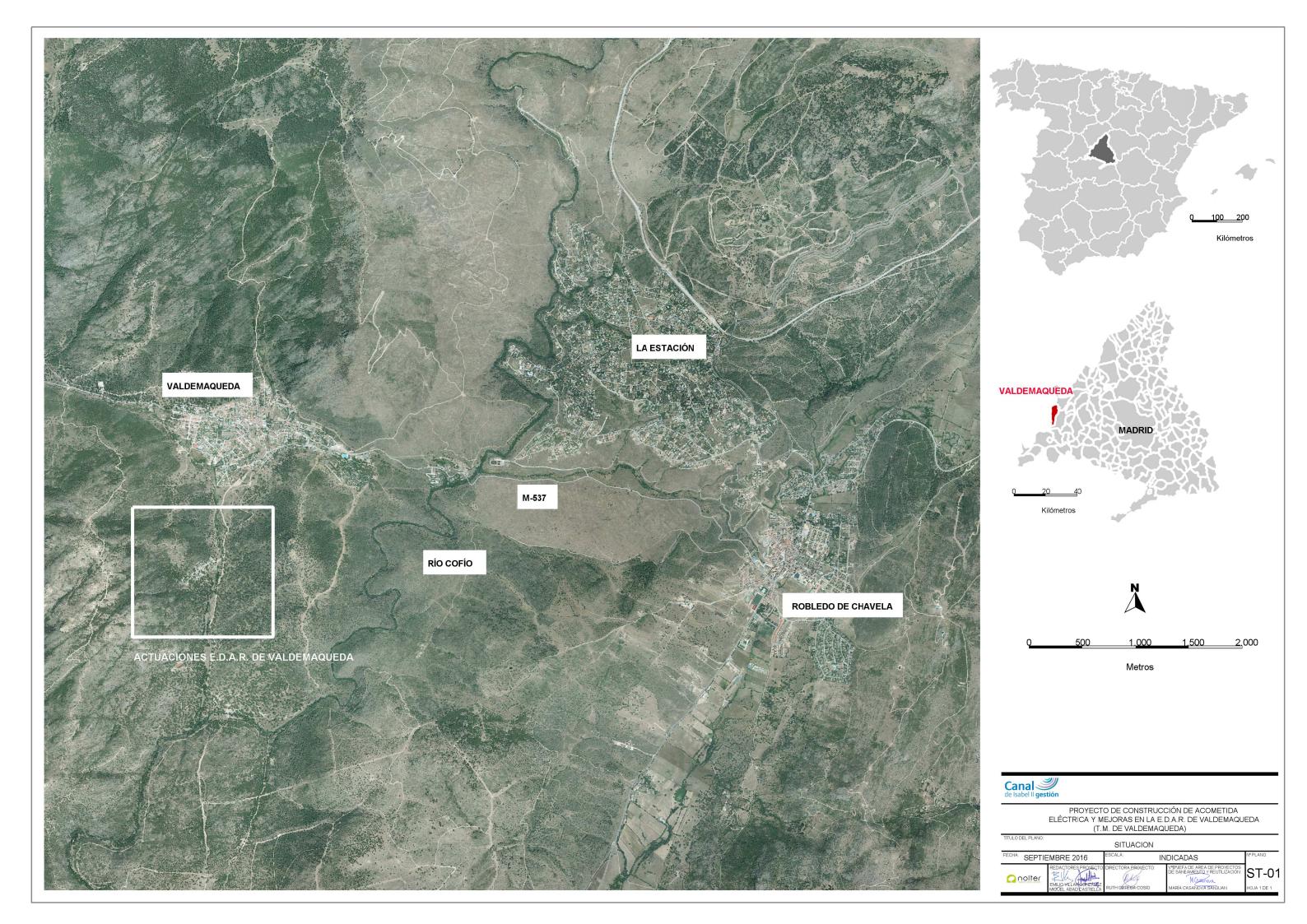
13 % de Gastos Generales

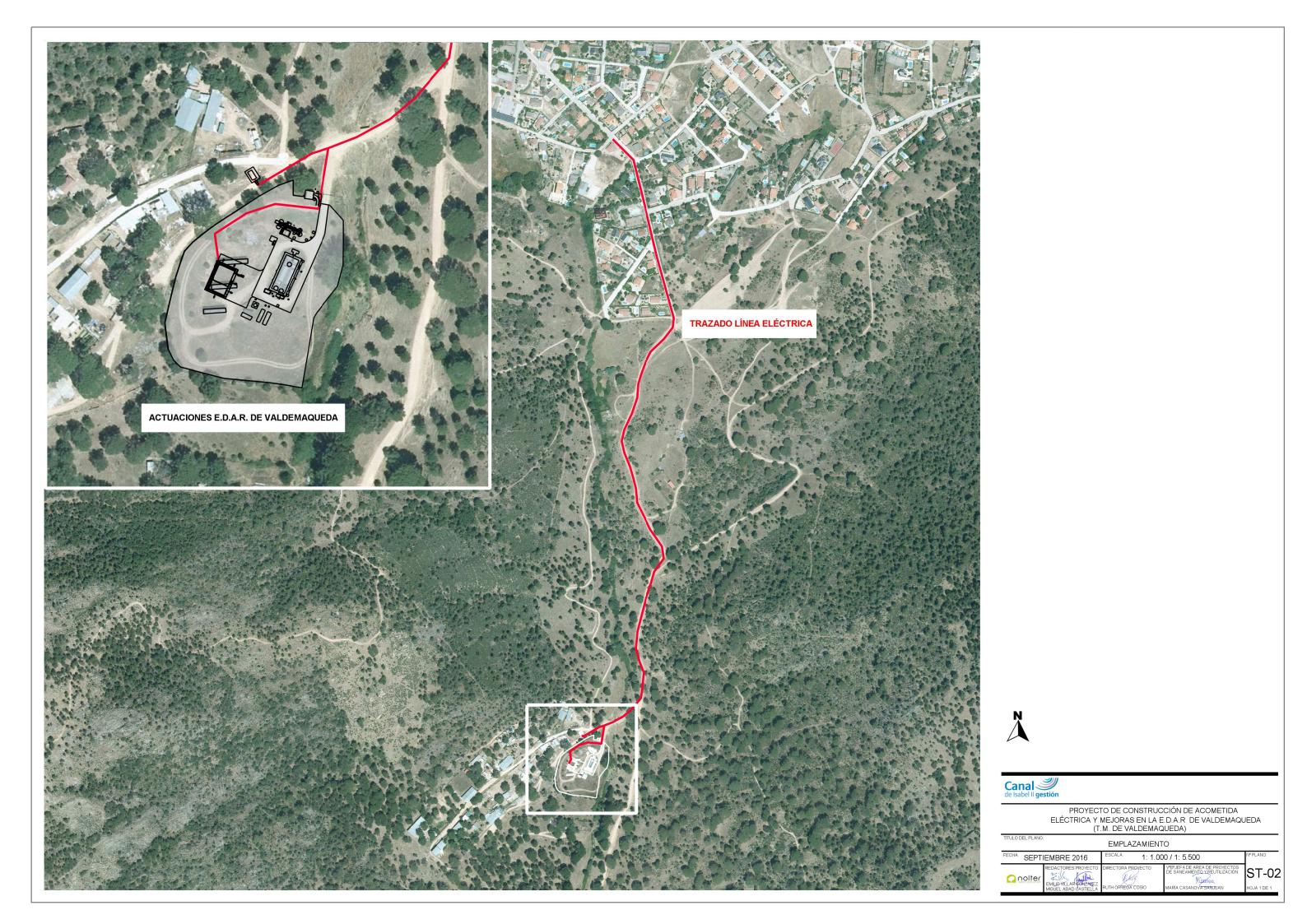
108.976,69€

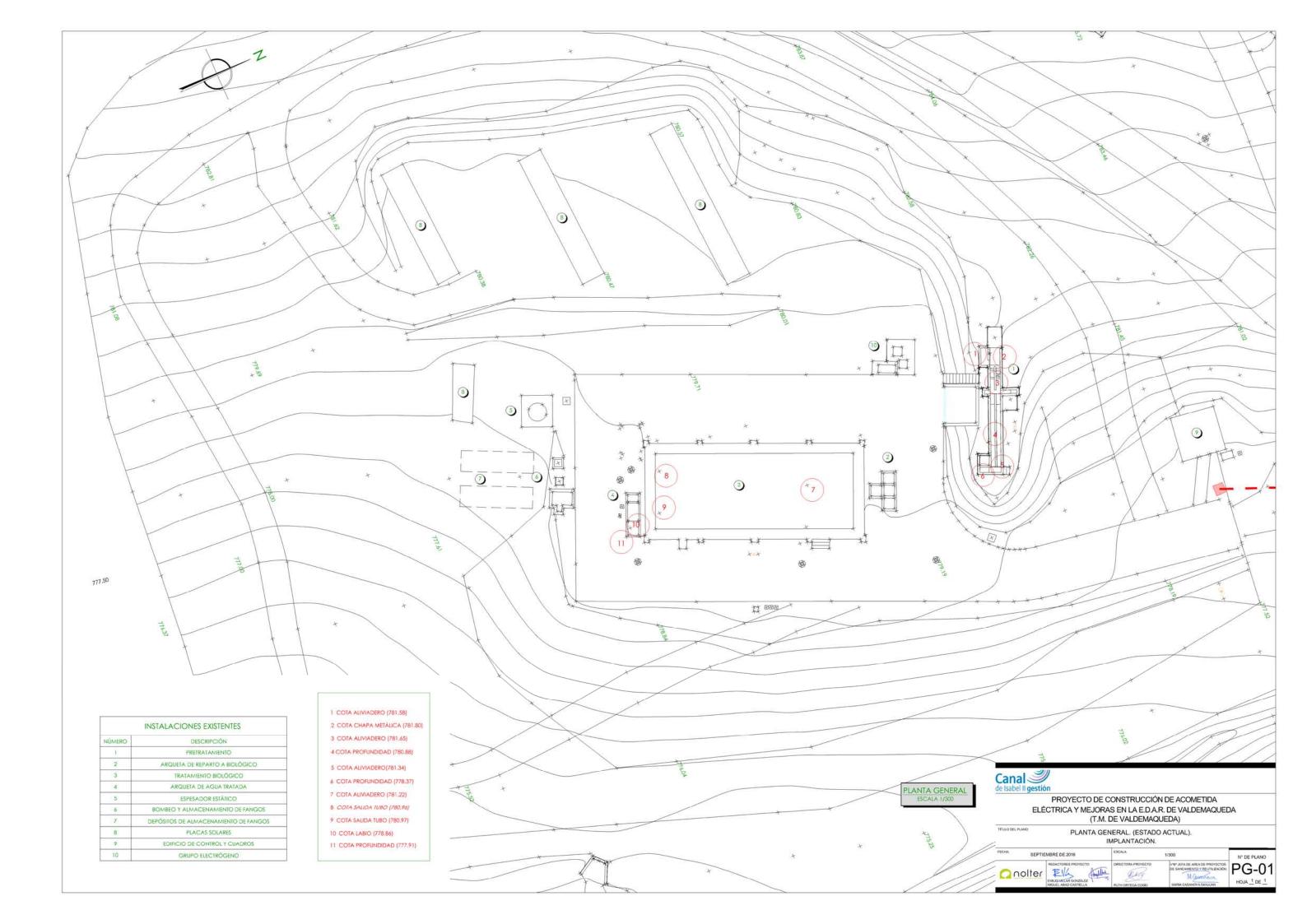
6 % de Beneficio Industrial

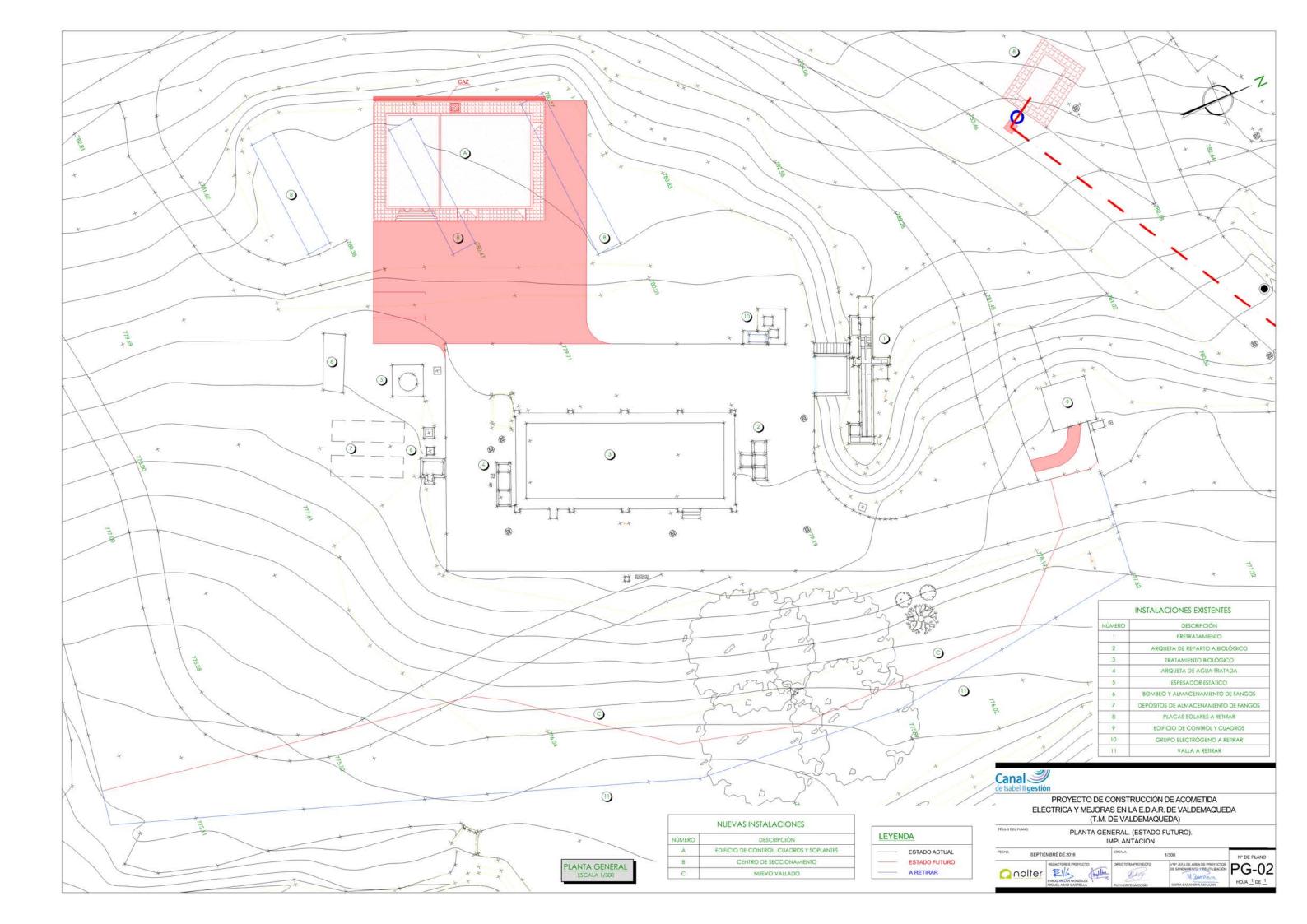
50.296,93 €

PRESUPUESTO BASE DE LICITACIÓN SIN IVA


997.555,82 €


Asciende el Presupuesto Base estimado de Licitación sin IVA a la expresada cantidad de:


NOVECIENTOS NOVENTA Y SIETE MIL QUINIENTOS CINCUENTA Y CINCO EUROS CON OCHENTA Y DOS CÉNTIMOS (997.555,82.-€)



Anexo 1. Planos principales del proyecto

		,	,
ANF.IO No	2 CARTOG	$R\Delta FI\Delta Y TO$	OPOGRAFIA

ANEJO № 2.- CARTOGRAFÍA Y TOPOGRAFÍA INDICE

1	INTRODUCCIÓN	. 1
ANEXO	Nº 1 MEMORIA DEL ESTUDIO TOPOGRÁFICO	
ANEXO	Nº 2 PLANOS DEL LEVANTAMIENTO TOPOGRÁFICO	
APÉNDI	CE Nº 1 REPORTAJE FOTOGRÁFICO	

1.-INTRODUCCIÓN

Se adjunta a continuación la memoria del Estudio topográfico y el plano del levantamiento realizado por la empresa Norte Topografía a petición de Canal de Isabel II Gestión S.A. en Octubre de 2015. Corresponde al trazado que recorrerá la línea de acometida eléctrica desde el punto de conexión propuesta por Iberdrola, por el casco urbano de Valdemaqueda y por el camino hasta la E.D.A.R., al igual que en la propia parcela de la depuradora donde se ejecutarán el resto de elementos del proyecto, así como del tramo del Arroyo Rodajos que discurre junto a la E.D.A.R.

ANEXO Nº 1.- MEMORIA DEL ESTUDIO TOPOGRÁFICO

LEVANTAMIENTO TOPOGRÁFICO EN LA EDAR VALDEMAQUEDA MEMORIA TÉCNICA OCTUBRE 2015

TRABAJOS TOPOGRÁFICOS

<u>ÍNDICE</u>

1	INTRODUCCIÓN	2
2	SISTEMA DE REFERENCIA	3
3	RED DE BASES TOPOGRÁFICAS	5
4	LEVANTAMIENTO TOPOGRÁFICO	7
	_	
APÉND	DICE 1. SISTEMA DE REFERENCIA. RESEÑA DE LAS ESTACIONES DE REFERENCIA GN	NSS.10
APÉND	DICE 2. RED DE BASES TOPOGRÁFICAS. GRÁFICO DE SITUACIÓN	. 13
APÉND	DICE 3. RED DE BASES TOPOGRÁFICAS. LISTADO DE COORDENADAS	. 15
APÉND	DICE 4. RED DE BASES TOPOGRÁFICAS. RESEÑAS.	. 17
APÉND	DICE 5. RED DE BASES TOPOGRÁFICAS. REPORTE DE LÍNEAS - BASE	. 22
APÉND	DICE 6. LEVANTAMIENTO TAQUIMÉTRICO. LISTADO DE COORDENADAS	. 26

1.- INTRODUCCIÓN

La presente memoria describe la metodología empleada en la realización de los trabajos de levantamniento topográfico de la EDAR Valdemaqueda en el Término Municipal de Valdemaqueda.

Los trabajos han consistido en el levantamiento de la actual de la EDAR, del tramo del Arroyo Rodajos que discurre junto a la EDAR y del camino en entorno urbano desde la EDAR hasta la conexión propuesta por Iberdrola.

El trabajo se ha desarrollado de acuerdo a las siguientes fases:

- Enlace al Sistema de Referencia.
- Implantación de Bases Topográficas.
- Levantamiento Topográfico.

2.-SISTEMA DE REFERENCIA

En el desarrollo de los trabajos se ha utilizado el Sistema de Referencia Europeo (ETRS89), actualmente el único oficial en España, constituido por:

- o Elipsoide GRS 1980
 - Longitud del Semieje mayor del elipsoide (a) = 6.378.137 metros
 - Coeficiente de aplanamiento (α) = 1:298,257222101
- o Orígenes de coordenadas geodésicas:
 - Latitudes, referidas al Ecuador, positivas al Norte del mismo.
 - Longitudes referidas al Meridiano de Greenwich, consideradas positivas al Este y negativas al Oeste de dicho Meridiano.

Para realizar el enlace al sistema de referencia ETRS89, se ha empleado las estaciones de referencia permanentes "IGNE", perteneciente a la red de Estaciones Permanentes GNSS del Instituto Geográfico Nacional, y "GDRM" (Guadarrama) perteneciente a la Red de Estaciones Permanentes GNSS IBEREF.

Las coordenadas ETRS89 que se han empleado son:

Nombre	Latitud	Longitud	Altura Elipsoidal	х	Υ
IGNE	40° 26' 45.00901"	-3° 42' 34.28323"	766.920	439830.797	4477484.239
GDRM	40° 39' 51.28768"	-4° 05' 21.79010"	1013.684	407916.768	4502056.809

En su apéndice correspondiente, "Apéndice 1" se adjunta la información disponible de la Estación de Referencia utilizada.

La altimetría se ha referido al nivel medio del mar en Alicante, enlazando con la Red de Nivelación de Alta Precisión (R.N.A.P) mediante la aplicación del modelo del geoide EGM08-REDNAP.

3.- RED DE BASES TOPOGRÁFICAS

La Red de Bases Topográficas implantada consta de un total de cuatro bases (BR-4001, BR-4002, BR-4003 y BR-4004), quedando materializadas en el terreno mediante clavos de acero.

Las observaciones de las bases se ha realizado mediante técnicas GNSS, contando para su ejecución con equipos LEICA System 1.200, compuestos por receptores de doble frecuencia que trabajan con observables de código P y unidades de control portátil.

El método de observación utilizado ha sido el diferencial mediante observaciones en estático con postproceso para las bases 1001 y 1004 desde las estaciones permanentes GNSS, y diferencial mediante observaciones en tiempo real para la base 1002 y 1003, bisectadas a partir de las bases 1001 y 1004.

Los tiempos de observación han sido determinados por el número y geometría (GDOP) de los satélites operativos, las perturbaciones de la ionosfera y fundamentalmente por la longitud de las líneas-base.

Sobre el terreno se ha creado un fichero de datos para cada base de replanteo observada, con su numeración definitiva, introduciendo los datos propios del punto.

El proceso de datos para el cálculo de las líneas-base y resolución de ambigüedades, se ha realizado mediante el software Geo-Office de la casa LEICA, obteniendo a partir de las observaciones GNSS, las coordenadas de todos los puntos en el sistema ETRS89.

Para la obtención de cotas ortométricas se ha empleado la rejilla del IGN en formato NTV2, con el modelo del geoide EGM08-REDNAP de reciente publicación.

Se adjuntan los siguientes datos:

- Gráfico de situación de la Red de Bases Topográficas (Apéndice 2)
- Listado de coordenadas de la Red de Bases Topográficas (Apéndice 3)
- Reseñas de la Red de Bases Topográficas (Apéndice 4)
- Reporte de líneas base (Apéndice 5)

4.-LEVANTAMIENTO TOPOGRÁFICO

El levantamiento topográfico de la zona de trabajo se ha obtenido a escala 1:500, tomándose todos los datos que permitan definir con precisión los elementos situados en la zona objeto del levantamiento.

La toma de la nube de puntos se ha realizado por el método de radiación utilizando receptores GPS en tiempo real, en combinación con estación total.

El proceso de datos para el cálculo de las coordenadas del levantamiento se ha realizado con el software LEICA Geo Office, obteniendo a partir de las observaciones GNSS, las coordenadas de todos los puntos en el sistema ETRS89.

Los datos obtenidos mediante estación total han sido procesados con el software de cálculo topográfico PROTOPO.

Para la obtención de cotas ortométricas se ha empleado la rejilla del IGN en formato NTV2, con el modelo del geoide EGM08-REDNAP.

Una vez obtenidas las coordenadas X, Y, Z de la nube de puntos se han transportado a un fichero DXF, para su posterior edición con AutoCAD.

El listado de coordenadas del levantamiento se detalla en el "Apéndice 6"

El listado de códigos utilizados en la elaboración de los planos han sido los siguientes:

Nombre	Color	Símbolo
Acera	Color_11	
Agua_Pozo	Color_5	POZ
Alumbrado_Farola	Color_2	FAR
Bordillo	Color_21	
Camino	Color_7	

Nombre	Color	Símbolo
Carretera	Color_1	
Chapa metálica	Color_8	
Compuerta	Color_5	
Cota	Color_7	
Cota_oculta	Color_1	
Cotas_Piezométrica	Color_222	
Curva_Maestra	Color_16	
Curva_Normal	Color_31	
Curva_textos	Color_16	
Deposito	Color_5	
Edificacion	Color_1	
Electricidad_TorreElectrica	Color_1	TOE
Escaleras	Color_2	
Estructura	Color_1	
Hormigón	Color_8	
Jardin_Alcorque	Color_1	AQA
Jardin_AlcorqueCircularConArbol	Color_3	ACA
Jardin_AlcorqueCuadradoConArbol	Color_3	AQA
Jardin_Arbol	Color_3	ARB
Losas	Color_7	
Mobiliario_CartelInformativo	Color_31	CAR
Mobiliario_ArmarioTransformador	Color_7	
Mobiliario_Placa_Solar	Color_2	
Muro	Color_10	
Obra_Drenaje	Color_1	
Puertas	Color_7	
Punto	Color_7	
Rio	Color_5	
Saneamiento_Sumidero	Color_4	SUM
Talud	Color_61	
Trafico_Señal	Color_51	STF
tuberia	Color_5	
Tubo	Color_5	

Levantamiento topográfico en la EDAR Valdemaqueda.

Nombre	Color	Símbolo
Valla	Color_50	
Varios_Armario	Color_8	ARM
Varios_Arqueta	Color_8	RVA
Varios_Poste	Color_8	POS
Varios_Registro	Color_8	RVA
Varios_Respiradero	Color_8	RES
Vegetacion	Color_3	

APÉNDICE 1. SISTEMA DE REFERENCIA. RESEÑA DE LAS ESTACIONES

DE REFERENCIA GNSS.

Levantamiento topográfico en la EDAR Valdemaqueda.

Área de Geodesia

Subdirección General de Geodesia y Cartografía

Reseña de Estación Permanente - ERGNSS

24-oct-2015

– Situación:

Código.....: IGNE Nombre.....: IGNE Código IERS: 13411M001

Provincia: Madrid

Municipio: Madrid

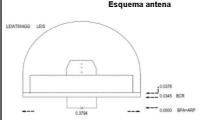
Instalación...: 19 de mayo de 2008

Localización.: Instituto Geográfico Nacional, C/ Gral. Ibañez de Ibero, 3

28008 - Madrid -

Construcción: Pilar de hormigón, de 1,20 cm. La marca de coordenadas

se encuentra en placa metálica.


— Coordenadas ETRS89:

Longitud:	- 3° 42' 34,28323"	X:	4851137.670 m.
Latitud:	40° 26' 45,00901"	Y:	-314518.688 m.
Altitud elipsoidal:	766.920 m.	Z:	4116282.036 m.
X UTM:	439830.797 m.	Altitud sobre el	nivel medio del
Y UTM:	4477484.239 m.	mar:	
Huso '	30		

- Instrumentación:

Receptor: LEICA GRX1200GGPRO

Antena: LEIAT504GG LEIS Altura: 0.0460 m. (BPA)
Offset de centros de fase de antena: L1 0.087 m. L2 0.118 m.
Esquema antena

- Información adicional:

Esta estación permanente pertenece a la red ERGNSS.

Datos horarios a 1, 5, 15 y 30 segundos y diarios a 30 segundos ftp://ftp.geodesia.ign.es

Emite correcciones diferenciales a través del Caster http://ergnss-ip.ign.es a través de los puntos de montaje:

- IGNE0 formato de la corrección RTCM versión RTCM 3.1
- IGNE1 formato de la corrección RTCM versión RTCM 2.3

E-mail de contacto: <u>buzon-geodesia@fomento.es</u>

Ir al Sitio: GDRM (GDRM) ▼
Estacion GDRM (GDRM)	
Estacion GDRW (GDRW)	
Nombre:	GDRM
Código:	GDRM
Número de IERS DOMES:	
Descripción:	
Latitud:	40° 39' 51.287675014" N
Longitud:	4° 5' 21.7901007596" W
Altura:	101.368m
Fecha Creación:	22/01/2009
Tipo de Receptor:	LEICA GMX902GG
No. Serie de Receptor:	
Sistema de Satélites	GPS y GLONASS
Tipo de Antena:	AX1202 GG
No. Serie de Antena:	
Punto de Referencia Antena:	
Radio de Cobertura:	30km
Máscara de Elevación:	10 °
Tasa de Registro:	1s
Comentario:	
Dirección IP del Servidor de Estaciones	:

APÉNDICE 2. RED DE BASES TOPOGRÁFICAS. GRÁFICO DE SITUACIÓN.

APÉNDICE 3. RED DE BASES TOPOGRÁFICAS. LISTADO DE COORDENADAS.

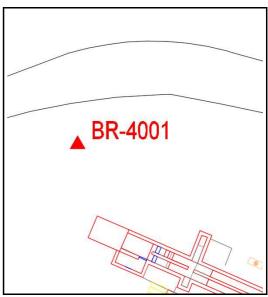
BASE	Latitud	Longitud	h Elip.	х	Υ	Z Ort.
BR-4001	40° 29' 58.28363" N	4° 18' 03.67366" W	835.135	389757.236	4484014.758	782.131
BR-4002	40° 29' 59.38976" N	4° 18' 02.15618" W	832.146	389793.460	4484048.338	779.122
BR-4003	40° 30' 00.53386" N	4° 17' 59.64975" W	838.633	389852.977	4484082.747	785.589
BR-4004	40° 30' 11.97815" N	4° 17' 59.94708" W	858.502	389851.177	4484435.729	805.481

APÉNDICE 4. RED DE BASES TOPOGRÁFICAS. RESEÑAS.

BR-4001

X (ETRS89): 389757.236

Y (ETRS89): 4484014.758


Z: 782.131

SITUACIÓN:

SEÑAL: Clavo metálico

OBSERVACIONES: Sistema de coordenadas UTM

CROQUIS

FOTOGRAFÍA

BR-4002

X (ETRS89): 389793.460

Y (ETRS89): 4484048.338

Z: 779.122

SITUACIÓN:

SEÑAL: Clavo metálico

OBSERVACIONES: Sistema de coordenadas UTM

CROQUIS BR-4002

FOTOGRAFÍA

CROQUIS

BR-4003

X (ETRS89): 389852.977

Y (ETRS89): 4484082.747

Z: 785.589

SITUACIÓN:

SEÑAL: Clavo metálico

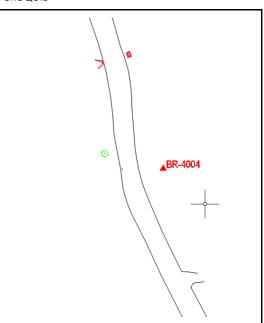
OBSERVACIONES: Sistema de coordenadas UTM

FOTOGRAFÍA

BR-4004

X (ETRS89): 389851.177

Y (ETRS89): 4484435.729


Z: 805.481

SITUACIÓN:

SEÑAL: Clavo metálico

OBSERVACIONES: Sistema de coordenadas UTM

CROQUIS

FOTOGRAFÍA

APÉNDICE 5. RED DE BASES TOPOGRÁFICAS. REPORTE DE LÍNEAS - BASE.

Página 1 de 3

Processing Summary CYII-EDAR Valdemaqueda

Project Information

Project name: CYII-EDAR Valdemaqueda Date created: 29/10/2015 12:27:13 pm

Time zone: 0h 00'
Coordinate system name: WGS 1984

Application software: LEICA Geo Office 5.0 Start date and time: 29/09/2015 08:24:58 am End date and time: 07/10/2015 12:27:28 pm

Manually occupied points:

Processing kernel: PSI-Pro 2.0

Processed: 29/10/2015 12:43:40 pm

Processing Parameters

Parameters Selected Cut-off angle: 15° Ephemeris type: Broadcast Solution type: Automatic GNSS type: Automatic Frequency: Automatic Fix ambiguities up to: 80 km Min. duration for float solution 5' 00" (static): Sampling rate: Use all Tropospheric model: Hopfield Ionospheric model: Automatic Use stochastic modelling: Yes Min. distance: 8 km Ionospheric activity: **Automatic**

Baseline Overview

 GDRM - BR-4001
 Reference: GDRM
 Rover: BR-4001

 Receiver type / S/N:
 LEICAGMX902GG / SYY07500053
 GX1230GG / 469759

 Antenna type / S/N:
 AX1202 GG / AX1202 Pillar /

 Antenna height:
 0.0000 m
 1.5670 m

Coordinates:

Latitude: 40° 39' 51.28768" N 40° 29' 58.28359" N Longitude: 4° 05' 21.79010" W 4° 18' 03.67363" W Ellip. Hgt: 1013.6843 m 835.1350 m

Solution type: Phase: all fix
GNSS type: GPS
Frequency: lonoFree (L3)
Ambiguity: Yes

Time span: 29/09/2015 08:24:58 am - 29/09/2015 12:57:58 pm

Duration: 4h 33' 00"

Levantamiento topográfico en la EDAR Valdemaqueda.

Página 2 de 3

Quality: Sd. Lat: 0.0002 m Sd. Lon: 0.0002 m Sd. Hgt: 0.0004 m

Posn. Qlty: 0.0002 m Sd. Slope: 0.0002 m

Baseline vector: dLat: -0° 09' 53.00409" dLon: -0° 12' 41.88353" dHgt: -178.5493 m

Slope: 25609.8471 m

DOPs (min-max): GDOP: 2.2 - 9.1

PDOP: 1.9 - 7.3 HDOP: 1.1 - 3.0 VDOP: 1.5 - 6.7

 IGNE - BR-4001
 Reference: IGNE
 Rover: BR-4001

 Receiver type / S/N:
 GRX1200GGPRO / 355504
 GX1230GG / 469759

 Antenna type / S/N:
 LEIAT504GG LEIS / 200435
 AX1202 Pillar /

 Antenna height:
 0.0460 m
 1.5670 m

Coordinates:

 Latitude:
 40° 26' 45.00901" N
 40° 29' 58.28399" N

 Longitude:
 3° 42' 34.28323" W
 4° 18' 03.67398" W

 Ellip. Hgt:
 766.9201 m
 835.1320 m

Solution type: Phase: all fix
GNSS type: GPS / GLONASS
Frequency: lonoFree (L3)

Ambiguity: Yes

Time span: 29/09/2015 08:25:13 am - 29/09/2015 12:57:43 pm

Duration: 4h 32' 30"

Quality: Sd. Lat: 0.0005 m Sd. Lon: 0.0005 m Sd. Hgt: 0.0014 m

Posn. Qlty: 0.0007 m Sd. Slope: 0.0005 m

Baseline vector: dLat: 0° 03' 13.27498" dLon: -0° 35' 29.39075" dHgt: 68.2119 m

Slope: 50519.4357 m

DOPs (min-max): GDOP: 1.7 - 7.6

PDOP: 1.5 - 6.0 HDOP: 0.7 - 1.5 VDOP: 1.2 - 5.9

 GDRM - BR-4004
 Reference: GDRM
 Rover: BR-4004

 Receiver type / S/N:
 LEICAGMX902GG / SYY07500053
 GX1230GG / 469759

 Antenna type / S/N:
 AX1202 GG / AX1202 Pillar /

 Antenna height:
 0.0000 m
 1.5350 m

Coordinates:

 Latitude:
 40° 39' 51.28768" N
 40° 30' 11.97811" N

 Longitude:
 4° 05' 21.79010" W
 4° 17' 59.94704" W

 Ellip. Hgt:
 1013.6843 m
 858.5033 m

Solution type: Phase: all fix
GNSS type: GPS / GLONASS
Frequency: lonoFree (L3)
Ambiguity: Yes

Time span: 07/10/2015 08:49:33 am - 07/10/2015 12:27:28 pm

Duration: 3h 37' 55"

Quality: Sd. Lat: 0.0001 m Sd. Lon: 0.0001 m Sd. Hgt: 0.0003 m

Posn. Qlty: 0.0002 m Sd. Slope: 0.0001 m

Baseline vector: dLat: -0° 09' 39.30957" dLon: -0° 12' 38.15694" dHgt: -155.1810 m

Slope: 25247.3245 m

DOPs (min-max): GDOP: 1.6 - 3.1

Levantamiento topográfico en la EDAR Valdemaqueda.

Página 3 de 3

PDOP: 1.4 - 2.6 HDOP: 0.7 - 1.1 VDOP: 1.2 - 2.3

IGNE - BR-4004 Rover: BR-4004 Reference: IGNE GRX1200GGPRO / 355504 GX1230GG / 469759 Receiver type / S/N: Antenna type / S/N: LEIAT504GG LEIS / 200435 AX1202 Pillar / -Antenna height: 0.0460 m 1.5350 m

Coordinates:

40° 30' 11.97879" N Latitude: 40° 26' 45.00901" N Longitude: 3° 42' 34.28323" W 4° 17' 59.94771" W 766.9201 m 858.4792 m Ellip. Hgt:

Solution type: Phase: all fix GNSS type: GPS / GLONASS Frequency: Ambiguity: IonoFree (L3)

Yes 07/10/2015 08:49:43 am - 07/10/2015 12:27:13 pm Time span:

3h 37' 30" Duration:

Sd. Lat: 0.0006 m Quality: Sd. Lon: 0.0005 m Sd. Hgt: 0.0014 m

Posn. Qlty: 0.0007 m Sd. Slope: 0.0005 m

dLat: 0° 03' 26.96978" dLon: -0° 35' 25.66447" dHgt: 91.5591 m Baseline vector:

Slope: 50482.6809 m

DOPs (min-max): GDOP: 1.6 - 3.7

PDOP: 1.4 - 3.1 HDOP: 0.7 - 1.2 VDOP: 1.2 - 2.9

APÉNDICE 6. LEVANTAMIENTO TAQUIMÉTRICO. LISTADO DE COORDENADAS.

NUM	х	Υ	Z
1	389789.991	4483952.095	774.625
2	389792.034	4483954.069	774.662
3	389790.080	4483954.996	774.980
4	389788.950	4483953.927	775.095
5	389790.141	4483954.703	774.671
6	389790.186	4483952.214	774.625
7	389789.256	4483953.866	774.671
8	389910.845	4484741.571	814.500
9	389908.975	4484742.410	814.994
10	389908.992	4484743.755	815.046
11	389910.244	4484745.084	814.559
12	389910.414	4484744.947	814.559
13	389872.857	4484887.400	823.961
14	389874.187	4484888.902	824.273
15	389874.068	4484889.388	824.273
16	389823.799	4484558.078	807.514
17	389824.131	4484557.961	807.411
18	389824.762	4484557.739	807.585
19	389825.236	4484559.062	807.949
20	389824.638	4484559.282	807.440
21	389824.264	4484559.420	807.563
22	389796.180	4484029.845	777.628
23	389797.079	4484020.687	777.025
24	389798.053	4484008.869	776.427
25	389798.907	4483996.813	775.995
26	389799.941	4483984.005	775.255
27	389798.613	4483977.839	775.194
28	389796.845	4483971.575	775.107
29	389794.861	4483963.553	774.921
30	389790.174	4483955.253	774.980
31	389776.990	4483925.163	775.040
32	389776.998	4483925.159	775.068
33	389779.128	4483922.552	774.870
34	389781.234	4483925.172	774.760
35	389782.876	4483930.638	774.687
36	389783.613	4483935.768	775.023
37	389785.144	4483942.636	775.398
38	389786.994	4483949.155	775.150
39	389788.710	4483953.789	775.095
40	389754.318	4483887.528	774.244
41	389752.854	4483892.587	774.432

NUM	х	Υ	Z
42	389754.244	4483901.353	774.682
43	389757.196	4483909.453	774.868
44	389760.046	4483917.599	774.944
45	389762.567	4483923.396	775.039
46	389766.135	4483922.675	774.755
47	389770.204	4483920.975	774.588
48	389771.852	4483917.524	774.177
49	389770.486	4483913.584	773.977
50	389767.313	4483910.210	774.014
51	389764.639	4483905.743	773.988
52	389762.180	4483905.388	774.170
53	389762.264	4483903.531	774.101
54	389764.481	4483901.849	773.895
55	389764.513	4483900.042	773.820
56	389765.997	4483898.066	773.710
57	389767.704	4483894.456	773.719
58	389768.098	4483893.514	773.696
59	389766.899	4483887.587	772.835
60	389766.384	4483888.373	773.502
61		4483883.485	774.076
	389757.099		
62	389765.207	4483882.260	773.313
63	389764.799	4483873.673	772.915
64	389847.674	4484249.151	790.701
65	389848.197	4484254.488	791.305
66	389843.486	4484255.693	790.902
67	389849.378	4484274.420	792.538
68	389855.086	4484278.885	792.896
69	389856.429	4484278.150	792.949
70	389849.638	4484278.828	792.399
71	389851.432	4484287.665	791.696
72	389849.009	4484284.285	791.888
73	389850.611	4484280.072	792.464
74	389854.621	4484282.496	793.010
75	389856.699	4484290.260	792.518
76	389858.587	4484288.022	793.644
77	389859.659	4484287.688	793.717
78	389860.287	4484302.126	793.430
79	389863.068	4484301.344	794.986
80	389863.730	4484301.100	795.050
81	389860.859	4484315.622	794.187
82	389869.905	4484331.591	794.952

NUM	Х	Υ	Z
83	389866.548	4484325.752	794.405
84	389863.958	4484318.903	794.749
85	389868.789	4484315.989	796.624
86	389865.045	4484310.308	795.939
87	389864.605	4484314.111	795.924
88	389866.575	4484317.818	796.107
89	389869.356	4484322.892	796.386
90	389873.197	4484328.194	796.510
91	389877.962	4484330.359	797.001
92	389875.944	4484331.782	796.532
93	389879.477	4484334.433	796.737
94	389880.520	4484333.560	797.051
95	389882.804	4484336.946	797.054
96	389885.079	4484341.826	797.059
97	389876.662	4484338.070	794.716
98	389879.253	4484338.671	795.020
99	389882.239	4484340.977	795.668
100	389879.258	4484344.366	795.859
101	389881.022	4484342.535	795.362
102	389884.557	4484343.851	795.732
103	389884.794	4484342.780	795.787
104	389883.363	4484341.551	795.914
105	389884.886	4484342.673	796.885
106	389884.947	4484342.610	797.185
107	389885.157	4484342.672	797.190
108	389884.775	4484344.133	797.186
109	389884.628	4484344.051	797.191
110	389884.605	4484343.974	796.867
111	389882.182	4484344.545	795.888
112	389884.415	4484345.722	797.062
113	389877.711	4484351.309	796.853
114	389880.198	4484352.647	797.223
115	389881.514	4484353.351	797.442
116	389872.084	4484360.521	797.886
117	389875.080	4484362.296	798.047
118	389876.448	4484363.030	798.315
119	389871.237	4484370.549	798.983
120	389870.416	4484370.194	798.914
121	389869.216	4484369.515	799.215
122	389865.992	4484369.034	799.204
123	389861.045	4484379.211	800.055

NUM	Х	Υ	Z
124	389862.926	4484380,274	800.148
125	389863.887	4484380.874	799.857
126	389864.729	4484381.446	799.859
127	389861.703	4484384.200	800.134
128	389859.778	4484388.268	800.398
129	389857.622	4484386.659	800.353
130	389853.897	4484384.806	799.611
131	389851.070	4484392.977	799.776
132	389853.376	4484394.550	800.330
133	389855.595	4484396.057	801.088
134	389850.434	4484406.379	801.992
135	389848.377	4484405.580	801.295
136	389845.803	4484404.728	801.032
137	389842.463	4484413.620	802.278
138	389845.000	4484414.809	802.668
139	389846.193	4484415.441	802.868
140	389842.950	4484421.700	803.548
141	389841.919	4484421.467	803.364
141	389840.308	4484420.894	803.899
143	389838.008	4484420.004	803.526
143	389835.862	4484426.620	804.413
145	389837.429	4484429.585	804.694
146 147	389839.208	4484430.161	804.153
	389839.936		804.303
148	389838.465	4484434.124	804.525
149	389839.574	4484435.437	804.574
150	389818.104	4485084.026	828.918
151	389819.941	4485081.379	828.757
152	389831.449	4485090.832	829.575
153	389848.602	4485104.513	831.148
154	389859.748	4485112.928	832.364
155	389830.393	4485085.316	829.560
156	389833.034	4485087.801	829.670
157	389833.634	4485088.094	829.774
158	389835.748	4485088.969	829.900
159	389836.406	4485089.486	829.864
160	389835.499	4485089.183	829.886
161	389836.089	4485089.698	830.054
162	389837.751	4485091.391	830.070
163	389838.042	4485091.674	830.127
164	389838.857	4485092.106	830.056

165 389839.289 4485091.894 830.178 166 389841.298 4485093.485 830.205 167 389841.124 4485093.778 830.249 168 389841.784 4485095.092 830.009 169 389841.784 4485095.098 830.316 170 389843.085 4485095.663 830.553 171 389843.433 4485095.628 830.595 173 389843.624 4485095.455 830.597 174 389844.231 4485095.994 830.612 175 389844.172 4485096.195 830.633 176 389846.629 4485099.019 830.814 177 389847.253 4485098.599 830.997 179 389847.451 4485098.599 830.997 179 389851.059 4485100.519 831.056 181 389851.059 4485100.519 831.056 183 389851.059 4485100.59 831.522 184 389852.787 4485103.98	NUM	х	Υ	Z
166 389841.298 4485093.485 830.205 167 389841.124 4485093.778 830.249 168 389838.671 4485092.602 830.009 169 389841.784 4485095.098 830.316 170 389842.935 4485095.663 830.553 171 389843.085 4485095.628 830.595 173 389843.624 4485095.455 830.597 174 389844.231 4485095.994 830.612 175 389844.172 4485096.195 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485098.599 830.997 179 389847.253 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389850.001 4485100.519 831.552 183 389851.059 4485100.529 831.529 184 389852.787 4485103.654 831.565 186 389853.421 4485103.968				_
167 389841.124 4485093.778 830.249 168 389838.671 4485092.602 830.009 169 389841.784 4485095.098 830.316 170 389842.935 4485095.275 830.531 171 389843.085 4485095.663 830.553 172 389843.433 4485095.628 830.597 174 389844.231 4485095.994 830.612 175 389844.231 4485095.994 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485098.599 830.997 179 389847.253 4485098.599 830.997 179 389847.451 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389851.059 4485101.623 831.522 183 389852.787 4485102.982 831.522 184 389852.484 4485103.654 831.565 186 389853.421 4485103.968				
168 389838.671 4485092.602 830.009 169 389841.784 4485095.098 830.316 170 389842.935 4485095.275 830.531 171 389843.085 4485095.663 830.593 172 389843.433 4485095.628 830.595 173 389843.624 4485095.455 830.597 174 389844.231 4485095.994 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485098.599 830.997 178 389847.253 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389850.001 4485100.750 831.111 182 389851.059 4485102.982 831.522 183 389852.787 4485103.654 831.522 184 389853.421 4485103.654 831.622 187 389854.558 4485103.968 831.622 187 389855.335 4485104.999				
169 389841.784 4485095.098 830.316 170 389842.935 4485095.275 830.531 171 389843.085 4485095.628 830.595 173 389843.433 4485095.455 830.597 174 389844.231 4485095.994 830.612 175 389846.629 4485099.019 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485098.599 830.997 179 389847.253 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389850.001 4485100.750 831.111 182 389851.059 4485101.623 831.522 183 389852.787 4485102.982 831.522 184 389852.942 4485103.654 831.622 187 389853.421 4485103.968 831.622 187 389855.335 4485104.778 831.826 190 389855.335 4485105.510				
170 389842.935 4485095.275 830.531 171 389843.085 4485095.663 830.553 172 389843.433 4485095.628 830.595 173 389843.624 4485095.455 830.597 174 389844.231 4485095.994 830.612 175 389844.172 4485099.019 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485101.388 831.099 178 389847.253 4485098.599 830.997 179 389847.451 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389851.059 4485101.623 831.352 183 389852.787 4485102.982 831.529 184 389852.942 4485103.654 831.565 186 389853.421 4485103.654 831.622 187 389854.558 4485105.340 831.826 190 389855.335 4485104.798				
171 389843.085 4485095.663 830.553 172 389843.433 4485095.628 830.595 173 389843.624 4485095.455 830.597 174 389844.231 4485095.994 830.612 175 389844.172 4485096.195 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485101.388 831.099 178 389847.253 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389850.001 4485100.519 831.52 183 389851.059 4485102.982 831.529 184 389851.059 4485102.982 831.529 184 389852.787 4485103.654 831.529 184 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.826 190 389855.335 4485104.999				
172 389843.433 4485095.628 830.595 173 389843.624 4485095.455 830.597 174 389844.231 4485095.994 830.612 175 389844.172 4485096.195 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485098.599 830.997 179 389847.253 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389850.001 4485100.519 831.352 183 389851.059 4485100.59 831.352 184 389851.059 4485102.982 831.529 184 389852.688 4485103.112 831.529 184 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.826 190 389855.335 4485104.778 831.840 192 389855.730 4485105.510				
173389843.6244485095.455830.597174389844.2314485095.994830.612175389844.1724485096.195830.633176389846.6294485099.019830.814177389849.6114485098.599830.997179389847.2534485098.450831.021180389850.0014485100.519831.056181389849.9374485100.750831.111182389851.0594485101.623831.522183389852.7874485102.982831.529184389852.6884485103.112831.532185389852.9424485103.654831.565186389853.4214485103.968831.622187389854.5584485105.340831.629188389855.1254485104.999831.799189389855.3354485104.778831.826190389855.8984485105.222831.769191389856.6974485106.209831.933193389856.6224485106.278831.946194389861.1884485110.687832.324196389857.5424485115.446832.476198389849.4494485109.269831.648199389850.0964485109.618831.626				
174 389844.231 4485095.994 830.612 175 389844.172 4485096.195 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485098.599 830.997 178 389847.253 4485098.599 830.997 179 389847.451 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389851.059 4485100.750 831.111 182 389851.059 4485102.982 831.529 184 389852.688 4485102.982 831.529 184 389852.688 4485103.968 831.622 185 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485105.510 831.840 190 389855.730 4485105.510 831.840 192 389856.697 4485106.209	172	389843.433	4485095.628	830.595
175 389844.172 4485096.195 830.633 176 389846.629 4485099.019 830.814 177 389849.611 4485101.388 831.099 178 389847.253 4485098.599 830.997 179 389847.451 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389851.059 4485100.750 831.111 182 389851.059 4485102.982 831.529 184 389852.787 4485102.982 831.529 184 389852.688 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.999 831.769 190 389855.898 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278	173	389843.624	4485095.455	830.597
176 389846.629 4485099.019 830.814 177 389849.611 4485101.388 831.099 178 389847.253 4485098.599 830.997 179 389847.451 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389849.937 4485100.750 831.111 182 389851.059 4485102.982 831.352 183 389852.787 4485102.982 831.529 184 389852.688 4485103.112 831.532 185 389852.942 4485103.968 831.622 187 389854.558 4485103.968 831.622 187 389855.335 4485104.999 831.799 189 389855.335 4485104.778 831.840 190 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.687	174	389844.231	4485095.994	830.612
177389849.6114485101.388831.099178389847.2534485098.599830.997179389847.4514485098.450831.021180389850.0014485100.519831.056181389849.9374485100.750831.111182389851.0594485101.623831.352183389852.7874485102.982831.529184389852.6884485103.112831.532185389852.9424485103.654831.565186389853.4214485103.968831.622187389854.5584485104.999831.799189389855.3354485104.778831.826190389855.8984485105.222831.769191389855.7304485105.510831.840192389856.6974485106.209831.953193389856.6224485106.278831.946194389861.5684485110.075832.485195389861.1884485110.687832.324196389857.5424485114.915832.305197389856.9194485115.446832.476198389849.4494485109.269831.648199389850.0964485109.618831.626	175	389844.172	4485096.195	830.633
178389847.2534485098.599830.997179389847.4514485098.450831.021180389850.0014485100.519831.056181389849.9374485100.750831.111182389851.0594485101.623831.352183389852.7874485102.982831.529184389852.6884485103.112831.532185389852.9424485103.654831.565186389853.4214485103.968831.622187389854.5584485105.340831.629188389855.1254485104.778831.826190389855.8984485105.222831.769191389855.7304485105.510831.840192389856.6224485106.209831.953193389856.6224485106.278831.946194389861.1884485110.075832.485195389861.1884485110.687832.324196389857.5424485114.915832.305197389856.9194485115.446832.476198389849.4494485109.269831.648199389850.0964485109.618831.626	176	389846.629	4485099.019	830.814
179 389847.451 4485098.450 831.021 180 389850.001 4485100.519 831.056 181 389849.937 4485100.750 831.111 182 389851.059 4485101.623 831.352 183 389852.787 4485102.982 831.529 184 389852.688 4485103.112 831.532 185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485115.446 832.476 198 389850.096 4485109.269 831.6	177	389849.611	4485101.388	831.099
180 389850.001 4485100.519 831.056 181 389849.937 4485100.750 831.111 182 389851.059 4485101.623 831.352 183 389852.787 4485102.982 831.529 184 389852.688 4485103.112 831.532 185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485115.446 832.476 198 389849.449 4485109.269 831.6	178	389847.253	4485098.599	830.997
181 389849.937 4485100.750 831.111 182 389851.059 4485101.623 831.352 183 389852.787 4485102.982 831.529 184 389852.688 4485103.112 831.532 185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485119.269 831.648 199 389850.096 4485109.618 831.626 200 389849.568 4485109.242 831.6	179	389847.451	4485098.450	831.021
182 389851.059 4485101.623 831.352 183 389852.787 4485102.982 831.529 184 389852.688 4485103.112 831.532 185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.626	180	389850.001	4485100.519	831.056
183 389852.787 4485102.982 831.529 184 389852.688 4485103.112 831.532 185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.626	181	389849.937	4485100.750	831.111
184 389852.688 4485103.112 831.532 185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.626	182	389851.059	4485101.623	831.352
185 389852.942 4485103.654 831.565 186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.626	183	389852.787	4485102.982	831.529
186 389853.421 4485103.968 831.622 187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.626 200 389849.568 4485109.242 831.626	184	389852.688	4485103.112	831.532
187 389854.558 4485105.340 831.629 188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.626	185	389852.942	4485103.654	831.565
188 389855.125 4485104.999 831.799 189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	186	389853.421	4485103.968	831.622
189 389855.335 4485104.778 831.826 190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	187	389854.558	4485105.340	831.629
190 389855.898 4485105.222 831.769 191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	188	389855.125	4485104.999	831.799
191 389855.730 4485105.510 831.840 192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	189	389855.335	4485104.778	831.826
192 389856.697 4485106.209 831.953 193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	190	389855.898	4485105.222	831.769
193 389856.622 4485106.278 831.946 194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	191	389855.730	4485105.510	831.840
194 389861.568 4485110.075 832.485 195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	192	389856.697	4485106.209	831.953
195 389861.188 4485110.687 832.324 196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	193	389856.622	4485106.278	831.946
196 389857.542 4485114.915 832.305 197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	194	389861.568	4485110.075	832.485
197 389856.919 4485115.446 832.476 198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	195	389861.188	4485110.687	832.324
198 389849.449 4485109.269 831.648 199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	196	389857.542	4485114.915	832.305
199 389850.096 4485109.618 831.687 200 389849.568 4485109.242 831.626	197	389856.919	4485115.446	832.476
200 389849.568 4485109.242 831.626	198	389849.449	4485109.269	831.648
	199	389850.096	4485109.618	831.687
201 389847.791 4485108.091 831.460	200	389849.568	4485109.242	831.626
, , , , , , , , , , , , , , , , , , , ,	201	389847.791	4485108.091	831.460
202 389848.306 4485107.544 831.307	202	389848.306	4485107.544	831.307
203 389841.047 4485101.684 830.557	203	389841.047		830.557
204 389840.442 4485101.479 830.486	204	389840.442	4485101.479	
205 389839.463 4485101.803 830.470				

NUM	х	Υ	Z
206	389840.246	4485102.059	830.381
207	389835.321	4485106.344	830.848
208	389834.868	4485105.971	830.784
209	389829.488	4485103.971	831.059
210	389829.343	4485110.903	831.096
		4485111.471	831.123
211	389829.500	4485112.061	
212	389829.976	. 1001111107	831.340
213	389831.756	4485113.330	831.405
214	389831.192	4485113.870	831.217
215	389829.542	4485115.263	831.376
216	389825.577	4485111.085	831.151
217	389824.123	4485109.017	831.067
218	389823.672	4485108.443	831.230
219	389825.890	4485106.273	831.059
220	389826.617	4485105.527	830.967
221	389828.755	4485103.430	830.733
222	389829.175	4485103.975	830.604
223	389833.817	4485100.554	830.278
224	389839.770	4485097.605	830.282
225	389837.763	4485095.466	830.047
226	389834.694	4485097.113	830.239
227	389833.623	4485098.855	830.307
228	389834.110	4485098.549	830.254
229	389834.914	4485097.885	830.275
230	389834.989	4485098.241	830.113
231	389835.233	4485097.624	830.064
232	389834.834	4485096.676	829.965
233	389834.792	4485097.404	830.165
234	389829.680	4485093.388	829.767
235	389830.150	4485092.928	829.599
236	389825.042	4485088.834	829.246
237	389820.974	4485085.525	828.934
238	389824.404	4485089.082	829.271
239	389824.170	4485089.186	829.465
240	389820.802	4485086.552	829.254
241	389820.898	4485086.295	829.165
242	389820.258	4485085.759	829.011
243	389815.869	4485082.179	828.620
244	389815.208	4485077.964	828.451
245	389816.273	4485082.306	828.749
246	389814.903	4485080.696	828.522
	I		

NUM	Х	Υ	Z
247	389812.862	4485079.077	828.398
248	389814.347	4485081.068	828.696
249	389814.118	4485081.312	828.750
250	389811.638	4485079.262	828.760
251	389811.771	4485078.939	828.544
252	389807.631	4485075.596	828.328
253	389807.922	4485075.080	828.138
254	389798.531	4485064.129	827.484
255	389790.609	4485067.856	827.862
256	389782.255	4485076.214	828.620
257	389797.563	4485067.686	827.818
258	389798.057	4485067.199	827.640
259	389797.078	4485066.669	827.649
260	389795.764	4485066.809	827.712
261	389796.842	4485067.982	827.763
262	389793.939	4485070.863	827.955
263	389792.880	4485069.695	827.923
264	389789.296	4485073.258	828.225
265	389790.690	4485074.506	828.410
266	389793.212	4485071.664	828.164
267	389792.688	4485071.067	828.158
268	389793.305	4485070.448	828.105
269	389786.087	4485077.752	828.730
270	389785.448	4485079.799	828.879
271	389784.117	4485078.440	828.667
272	389789.035	4485065.167	827.741
273	389782.542	4485071.568	828.321
274	389780.796	4485073.321	828.535
275	389780.058	4485074.149	828.561
276	389778.822	4485072.549	828.695
277	389779.396	4485071.964	828.620
278	389781.133	4485070.210	828.477
279	389783.692	4485067.619	828.338
280	389785.104	4485066.301	828.207
281	389787.869	4485065.128	827.986
282	389787.315	4485065.648	828.010
283	389786.740	4485065.088	828.004
284	389782.901	4485068.430	828.396
285	389785.569	4485068.603	828.155
286	389790.316	4485061.040	827.780
287	389791.625	4485062.492	827.595

NUM	Х	Υ	Z
288	389794.182	4485059.947	827.418
289	389794.278	4485058.700	827.394
290	389793.650	4485057.305	827.390
291	389793.298	4485057.944	827.560
292	389787.658	4485052.160	827.391
293	389787.964	4485051.683	827.256
294	389793.792	4485058.921	827.600
295	389793.639	4485060.025	827.587
296	389802.766	4485066.681	827.626
297	389803.317	4485064.320	827.503
298	389803.083	4485064.650	827.505
299	389802.499	4485064.201	827.499
300	389802.465	4485064.272	827.495
301	389802.027	4485064.819	827.530
302	389802.357	4485065.070	827.519
303	389793.750	4485061.079	827.386
304	389794.271	4485060.596	827.389
305	389794.025	4485060.332	827.414
306	389797.607	4485062.004	827.351
307	389797.426	4485061.101	827.291
308	389797.185	4485058.471	827.192
309	389799.194	4485053.642	827.065
310	389797.605	4485052.778	827.126
311	389798.057	4485053.090	827.089
312	389792.452	4485047.470	827.087
313	389792.004	4485048.098	826.935
314	389797.455	4485053.492	826.979
315	389798.597	4485054.088	826.978
316	389800.035	4485054.037	826.947
317	389806.658	4485044.559	826.658
318	389806.885	4485044.589	826.654
319	389804.046	4485048.827	826.770
320	389804.589	4485048.265	826.721
321	389804.055	4485047.684	826.750
322	389805.693	4485048.384	826.559
323	389804.251	4485046.969	826.743
324	389808.827	4485042.405	826.617
325	389808.646	4485042.164	826.626
326	389809.218	4485041.616	826.613
327	389809.494	4485041.784	826.586
328	389810.840	4485042.035	826.539

NUM	х	Υ	Z
329	389811.379	4485041.468	826.530
330	389810.845	4485040.896	826.548
331	389813.067	4485041.013	826.356
332	389816.631	4485037.460	826.240
333	389812.445	4485038.837	826.428
334	389812.228	4485038.554	826.420
335	389814.528	4485036.246	826.397
336	389814.828	4485036.455	826.363
337	389818.270	4485034.597	826.336
338	389818.823	4485034.030	826.324
339	389818.248	4485033.473	826.337
340	389819.849	4485034.232	826.174
341	389818.475	4485032.715	826.355
342	389824.665	4485027.407	826.162
343	389824.974	4485029.101	826.034
344	389825.592	4485027.565	825.999
345	389824.977	4485026.216	826.013
346	389825.277	4485025.916	825.934
347	389827.284	4485023.875	825.896
348	389829.970	4485021.219	825.877
349	389830.205	4485021.010	825.859
350	389831.213	4485021.148	825.879
351	389832.161	4485020.489	825.979
352	389832.571	4485019.483	826.010
353	389825.092	4485029.202	826.000
354	389825.586	4485029.671	826.021
355	389825.305	4485029.967	826.028
356	389823.912	4485030.768	826.082
357	389823.743	4485027.431	826.199
358	389820.940	4485021.859	825.553
359	389825.586	4485024.629	825.766
360	389823.421	4485020.845	825.346
361	389820.193	4485015.706	824.955
362	389818.286	4485016.036	825.073
363	389818.008	4485016.227	825.025
364	389818.669	4485015.793	824.948
365	389818.588	4485015.606	824.980
366	389818.741	4485015.502	824.888
367	389819.388	4485014.994	824.905
368	389823.421	4485013.686	824.957
369	389825.134	4485016.801	825.231

NUM	Х	Υ	Z
370	389828.438	4485021.859	825.658
371	389823.002	4485012.623	824.926
372	389824.651	4485012.350	825.138
373	389824.394	4485013.320	825.074
374	389825.851	4485014.222	825.264
375	389827.376	4485016.418	825.413
376	389828.679	4485018.138	825.519
377	389829.945	4485018.380	825.534
378	389830.066	4485018.124	825.365
379	389830.802	4485018.299	825.392
380	389830.733	4485018.631	825.522
381	389830.783	4485018.721	826.142
382	389831.849	4485018.883	826.129
383	389832.086	4485019.748	826.147
384	389831.017	4485019.946	826.078
385	389830.363	4485021.835	825.870
386	389830.734	4485021.948	825.872
387	389830.937	4485021.297	825.858
388	389832.566	4485022.357	825.958
389	389835.329	4485015.437	826.121
390	389836.401	4485012.812	826.218
391	389834.014	4485013.680	826.161
392	389833.222	4485013.431	826.297
393	389835.625	4485003.825	826.699
394	389836.432	4485004.104	826.562
395	389839.109	4484993.834	826.885
396	389838.185	4484993.716	827.103
397	389840.433	4484984.868	827.332
398	389841.328	4484985.081	827.187
399	389843.904	4484975.061	827.263
400	389844.417	4484971.746	827.365
401	389843.920	4484971.499	827.163
402	389842.938	4484975.190	827.459
403	389843.333	4484973.375	827.388
404	389845.502	4484964.982	826.956
405	389846.378	4484965.188	826.798
406	389849.646	4484952.229	826.106
407	389848.156	4484958.085	826.491
408	389847.351	4484957.816	826.523
409	389846.811	4484957.656	826.540
410	389845.802	4484956.113	826.610

NUM	Х	Υ	Z
411	389845.899	4484955.545	826.636
412	389846.626	4484952.713	826.529
413	389847.504	4484952.642	826.405
414	389847.876	4484952.870	826.337
415	389848.485	4484951.277	826.319
416	389848.978	4484951.398	826.224
417	389851.352	4484940.199	825.933
418	389851.121	4484940.883	825.748
419	389852.625	4484940.429	825.542
420	389850.628	4484948.256	825.945
421	389849.847	4484948.199	826.207
422	389849.189	4484948.106	826.116
423	389847.482	4484946.142	826.772
424	389847.614	4484945.600	826.806
425	389848.725	4484941.071	826.099
426	389848.828	4484940.492	826.143
427	389851.897	4484939.854	825.630
428	389853.307	4484934.322	825.446
429	389854.098	4484934.629	825.245
430	389857.860	4484929.335	824.980
431	389857.145	4484931.105	825.051
432	389856.327	4484932.042	825.096
433	389856.417	4484933.399	825.153
434	389854.688	4484929.505	825.159
435	389855.791	4484925.433	824.969
436	389856.471	4484924.038	824.936
437	389856.961	4484923.250	824.688
438	389856.136	4484923.062	824.875
439	389860.287	4484906.495	824.367
440	389858.047	4484915.726	824.630
441	389859.155	4484914.644	824.352
442	389861.467	4484905.477	824.175
443	389860.601	4484905.472	824.295
444	389860.818	4484906.067	824.265
445	389863.064	4484899.244	824.006
446	389862.315	4484898.993	824.185
447	389862.530	4484898.129	824.109
448	389863.123	4484895.832	824.097
449	389863.935	4484893.102	824.076
450	389864.203	4484895.706	823.892
451	389864.233	4484891.844	823.812

452 389865.105 4484888.465 823.869 453 389868.402 4484877.497 823.567 454 389861.286 4484868.748 822.895 455 389870.714 4484869.030 823.420 456 389869.905 4484877.389 823.564 457 389870.085 4484885.394 823.856 459 389866.275 4484885.394 823.810 460 389866.864 4484882.398 823.788 461 389866.465 4484882.562 823.818 462 389866.465 4484883.316 823.776 463 389865.465 4484883.409 823.920 464 389865.760 4484888.566 823.775 466 389867.347 4484882.316 823.640 467 389865.760 4484887.205 823.477 468 389865.727 4484869.172 822.508 470 389857.297 4484866.510 822.598 471 389865.805 4484861.417	NUM	х	Υ	Z
453 389868.402 4484877.497 823.567 454 389861.286 4484868.748 822.895 455 389870.714 4484869.030 823.420 456 389869.905 4484877.389 823.564 457 389870.085 4484881.885 823.659 458 389866.275 4484885.394 823.856 459 389866.864 4484882.398 823.788 461 389866.465 4484882.562 823.818 462 389866.465 4484883.316 823.776 463 389865.604 4484883.409 823.920 464 389865.760 4484888.566 823.775 466 389867.347 4484882.316 823.640 467 389865.760 4484887.205 823.477 468 389865.71 4484877.428 823.324 469 389855.057 4484869.172 822.508 470 389857.297 4484863.510 822.898 473 389861.662 4484861.417				_
454 389861.286 4484868.748 822.895 455 389870.714 4484869.030 823.420 456 389869.905 4484877.389 823.564 457 389870.085 4484881.885 823.659 458 389866.275 4484885.394 823.856 459 389866.864 4484882.398 823.788 461 389866.465 4484882.398 823.776 463 389866.405 4484883.316 823.776 463 389865.760 4484888.566 823.775 464 389867.347 4484882.083 823.826 465 389867.347 4484882.316 823.640 467 389865.760 4484887.205 823.477 468 389865.734 4484887.428 823.324 469 389857.297 4484869.172 822.508 470 389857.297 4484863.510 822.598 471 389865.805 4484861.417 823.217 472 389865.806 4484862.691				
455 389870.714 4484869.030 823.420 456 389869.905 4484877.389 823.564 457 389870.085 4484881.885 823.659 458 389866.275 4484885.394 823.856 459 389866.864 4484882.398 823.788 461 389866.465 4484882.398 823.818 462 389866.465 4484883.316 823.776 463 389866.485 4484892.083 823.826 465 389865.760 4484888.566 823.775 466 389867.347 4484882.316 823.640 467 389862.738 448487.428 823.324 469 389856.057 448486.316 823.324 469 389857.297 448486.310 822.598 471 389861.662 4484861.417 823.275 472 389861.662 4484861.417 822.960 473 389865.905 4484864.047 822.960 474 389865.800 4484861.675			. 10 10 7 7 1 13 7	
456 389869.905 4484877.389 823.564 457 389870.085 4484881.885 823.659 458 389866.275 4484885.394 823.856 459 389866.015 4484882.398 823.788 460 389866.864 4484882.398 823.788 461 389866.465 4484882.398 823.776 463 389866.400 4484883.409 823.20 464 389865.760 4484883.409 823.226 465 389865.760 4484882.316 823.775 466 389867.347 4484887.205 823.477 468 389863.761 4484877.428 823.324 469 389855.057 4484869.172 822.508 470 389857.297 4484863.510 822.598 471 389861.662 4484864.047 822.960 473 389865.905 4484862.691 823.212 475 389865.800 4484862.691 823.212 476 389865.806 4484861.675				
457 389870.085 4484881.885 823.659 458 389866.275 4484885.394 823.856 459 389866.015 4484885.756 823.910 460 389866.864 4484882.398 823.788 461 389866.465 4484882.562 823.818 462 389866.485 4484883.409 823.920 464 389864.862 4484882.083 823.775 466 389867.347 4484882.316 823.775 466 389867.347 44848878.205 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484869.172 822.508 470 389857.297 4484863.278 822.880 471 389861.662 4484864.047 822.960 473 389865.800 4484862.409 823.217 475 389865.800 4484862.409 823.212 476 389871.384 4484860.816 823.600 478 389871.384 4484860.816				
458 389866.275 4484885.394 823.856 459 389866.015 4484885.756 823.910 460 389866.864 4484882.398 823.788 461 389866.465 4484882.562 823.818 462 389866.485 4484883.316 823.776 463 389864.862 4484882.083 823.826 465 389865.760 4484882.316 823.775 466 389867.347 4484878.205 823.777 468 389863.761 4484878.205 823.477 469 389856.057 4484869.172 822.508 470 389857.297 4484863.278 822.890 471 389861.662 4484863.278 822.880 473 389865.905 4484862.691 823.217 475 389865.800 4484862.691 823.212 476 389865.800 4484860.816 823.600 477 389871.384 4484860.816 823.600 478 389871.384 4484861.413				
459 389866.015 4484885.756 823.910 460 389866.864 4484882.398 823.788 461 389866.465 4484882.562 823.818 462 389866.640 4484883.316 823.776 463 389866.485 4484892.083 823.826 465 389865.760 4484888.566 823.775 466 389867.347 4484882.316 823.640 467 389862.738 4484878.205 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484865.10 822.598 470 389857.297 4484863.278 822.880 473 389861.662 4484863.278 822.880 473 389865.905 4484862.691 823.217 475 389865.800 4484862.691 823.212 476 389868.606 4484861.675 823.265 477 389871.384 4484860.816 823.600 478 389871.384 4484864.411				
460 389866.864 4484882.398 823.788 461 389866.465 4484882.562 823.818 462 389866.640 4484883.316 823.776 463 389866.485 4484882.083 823.920 464 389865.760 4484882.083 823.640 467 389867.347 4484882.316 823.640 467 389862.738 4484878.205 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484868.510 822.598 470 389857.297 4484863.278 822.598 471 389861.662 4484863.278 822.880 473 389865.905 4484862.691 823.217 475 389865.800 4484862.691 823.217 476 389865.800 4484860.816 823.600 477 389871.384 4484860.816 823.600 478 389872.296 4484864.411 823.109 481 389863.237 4484864.634		000000.270		
461 389866.465 4484882.562 823.818 462 389866.640 4484883.316 823.776 463 389866.485 4484883.409 823.920 464 389864.862 4484882.083 823.826 465 389867.347 4484882.316 823.640 467 389862.738 4484877.428 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484869.172 822.508 470 389857.297 4484861.417 823.275 472 389861.662 4484863.278 822.880 473 389862.216 4484862.407 822.960 474 389865.905 4484862.691 823.212 475 389865.800 4484862.409 823.212 476 389868.606 4484861.675 823.265 477 389871.384 4484860.816 823.600 478 389872.296 4484864.411 823.149 480 389863.237 4484864.634				
462 389866.640 4484883.316 823.776 463 389866.485 4484883.409 823.920 464 389864.862 4484892.083 823.826 465 389865.760 4484882.316 823.775 466 389862.738 4484878.205 823.477 468 389863.761 4484869.172 822.508 470 389857.297 4484868.510 822.598 471 389868.475 4484861.417 823.275 472 389861.662 4484863.278 822.880 473 389865.905 4484862.691 823.217 475 389865.800 4484862.409 823.212 476 389868.606 4484861.675 823.265 477 389871.384 4484860.816 823.600 478 389872.296 4484861.139 823.440 480 389863.237 4484864.411 823.109 481 389862.257 4484864.634 822.848 483 389862.257 4484865.110				
463 389866.485 4484883.409 823.920 464 389864.862 4484892.083 823.826 465 389865.760 4484882.316 823.640 467 389862.738 4484878.205 823.477 468 389863.761 4484869.172 822.508 470 389857.297 4484868.510 822.598 471 389868.475 4484861.417 823.275 472 389861.662 4484864.047 822.960 474 389865.905 4484862.691 823.212 475 389865.800 4484862.409 823.212 476 389865.800 4484861.675 823.265 477 389871.384 4484860.816 823.600 478 389871.384 4484860.530 823.378 479 389872.296 4484864.411 823.109 481 389862.061 4484864.634 822.848 483 389862.257 4484864.634 822.875 484 389863.029 4484865.110				
464 389864.862 4484892.083 823.826 465 389865.760 4484888.566 823.775 466 389867.347 4484882.316 823.640 467 389862.738 4484878.205 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484869.172 822.508 470 389857.297 4484865.510 822.598 471 389861.662 4484863.278 822.880 473 389862.216 4484864.047 822.960 474 389865.905 4484862.691 823.217 475 389865.800 4484861.675 823.265 477 389871.384 4484860.816 823.600 478 389872.296 4484861.139 823.440 480 389863.237 4484864.411 823.109 481 389862.061 4484864.634 822.848 483 389863.257 4484865.166 822.875 484 389863.029 4484865.10				
465 389865.760 4484888.566 823.775 466 389867.347 4484882.316 823.640 467 389862.738 4484878.205 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484869.172 822.508 470 389857.297 4484861.417 823.275 471 389861.662 4484863.278 822.880 473 389862.216 4484862.691 823.217 475 389865.800 4484862.691 823.212 476 389863.606 4484861.675 823.265 477 389871.384 4484860.816 823.600 478 389872.296 4484861.139 823.440 480 389863.237 4484864.411 823.109 481 389862.061 4484864.634 822.848 483 389862.257 4484865.110 822.875 484 389863.029 4484865.110 822.922 485 389869.166 4484863.904		00000000		
466 389867.347 4484882.316 823.640 467 389862.738 4484878.205 823.477 468 389863.761 4484877.428 823.324 469 389856.057 4484869.172 822.508 470 389857.297 4484868.510 822.598 471 389868.475 4484861.417 823.275 472 389861.662 4484864.047 822.960 474 389865.905 4484862.691 823.217 475 389865.800 4484861.675 823.265 477 389871.190 4484860.816 823.600 478 389871.384 4484860.530 823.378 479 389872.296 4484864.1139 823.440 480 389863.237 4484864.411 823.109 481 389861.186 4484864.634 822.848 483 389862.257 4484865.166 822.875 484 389863.029 4484865.166 822.875 485 389869.166 4484863.904				
467 389862.738 4484878.205 823.477 468 389863.761 44848677.428 823.324 469 389856.057 4484869.172 822.508 470 389857.297 4484868.510 822.598 471 389868.475 4484861.417 823.275 472 389861.662 4484863.278 822.880 473 389865.905 4484862.691 823.217 475 389865.800 4484862.409 823.212 476 389865.800 4484860.816 823.600 478 389871.390 4484860.816 823.600 478 389871.384 4484860.530 823.378 479 389872.296 4484861.139 823.440 480 389863.237 4484864.411 823.109 481 389862.257 4484864.634 822.848 483 389862.257 4484865.166 822.875 484 389863.029 4484865.106 822.922 485 389866.263 4484863.904				
468389863.7614484877.428823.324469389856.0574484869.172822.508470389857.2974484868.510822.598471389868.4754484861.417823.275472389861.6624484863.278822.880473389862.2164484864.047822.960474389865.9054484862.691823.217475389865.8004484861.675823.265477389871.1904484860.816823.600478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.634822.875482389861.1864484865.166822.875484389863.0294484865.166822.875485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484847.242822.960489389874.755448486.723823.166490389877.9904484837.318822.769491389878.5584484836.694822.698				
469389856.0574484869.172822.508470389857.2974484868.510822.598471389868.4754484861.417823.275472389861.6624484863.278822.880473389862.2164484864.047822.960474389865.9054484862.691823.217475389865.8004484862.409823.212476389871.1904484860.816823.600478389871.3844484861.675823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698				
470389857.2974484868.510822.598471389868.4754484861.417823.275472389861.6624484863.278822.880473389862.2164484864.047822.960474389865.9054484862.691823.217475389865.8004484862.409823.212476389868.6064484861.675823.265477389871.1904484860.816823.600478389871.3844484861.139823.440480389863.2374484864.411823.109481389862.0614484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484846.723822.960489389877.9904484837.318822.769490389878.5584484836.694822.698	468	389863.761	4484877.428	823.324
471389868.4754484861.417823.275472389861.6624484863.278822.880473389862.2164484864.047822.960474389865.9054484862.691823.217475389865.8004484862.409823.212476389868.6064484861.675823.265477389871.1904484860.816823.600478389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484846.723822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	469	389856.057	4484869.172	822.508
472389861.6624484863.278822.880473389862.2164484864.047822.960474389865.9054484862.691823.217475389865.8004484862.409823.212476389868.6064484861.675823.265477389871.1904484860.816823.600478389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	470	389857.297	4484868.510	822.598
473389862.2164484864.047822.960474389865.9054484862.691823.217475389865.8004484862.409823.212476389868.6064484861.675823.265477389871.1904484860.816823.600478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484861.445823.315487389872.6384484861.445823.315488389876.2104484846.723822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	471	389868.475	4484861.417	823.275
474389865.9054484862.691823.217475389865.8004484862.409823.212476389868.6064484861.675823.265477389871.1904484860.816823.600478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484865.166822.875484389863.0294484865.160822.875485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	472	389861.662	4484863.278	822.880
475389865.8004484862.409823.212476389868.6064484861.675823.265477389871.1904484860.816823.600478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	473	389862.216	4484864.047	822.960
476389868.6064484861.675823.265477389871.1904484860.816823.600478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484861.445823.315487389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	474	389865.905	4484862.691	823.217
477389871.1904484860.816823.600478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	475	389865.800	4484862.409	823.212
478389871.3844484860.530823.378479389872.2964484861.139823.440480389863.2374484864.411823.109481389862.0614484864.732822.794482389861.1864484864.634822.848483389862.2574484865.166822.875484389863.0294484865.110822.922485389866.2634484863.904823.145486389869.1664484862.792823.235487389872.6384484861.445823.315488389876.2104484847.242822.960489389877.9904484837.318822.769491389878.5584484836.694822.698	476	389868.606	4484861.675	823.265
479 389872.296 4484861.139 823.440 480 389863.237 4484864.411 823.109 481 389862.061 4484864.732 822.794 482 389861.186 4484864.634 822.848 483 389862.257 4484865.166 822.875 484 389863.029 4484865.110 822.922 485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	477	389871.190	4484860.816	823.600
480 389863.237 4484864.411 823.109 481 389862.061 4484864.732 822.794 482 389861.186 4484864.634 822.848 483 389862.257 4484865.166 822.875 484 389863.029 4484865.110 822.922 485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	478	389871.384	4484860.530	823.378
481 389862.061 4484864.732 822.794 482 389861.186 4484864.634 822.848 483 389862.257 4484865.166 822.875 484 389863.029 4484865.110 822.922 485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	479	389872.296	4484861.139	823.440
482 389861.186 4484864.634 822.848 483 389862.257 4484865.166 822.875 484 389863.029 4484865.110 822.922 485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	480	389863.237	4484864.411	823.109
483 389862.257 4484865.166 822.875 484 389863.029 4484865.110 822.922 485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	481	389862.061	4484864.732	822.794
484 389863.029 4484865.110 822.922 485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	482	389861.186	4484864.634	822.848
485 389866.263 4484863.904 823.145 486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	483	389862.257	4484865.166	822.875
486 389869.166 4484862.792 823.235 487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	484	389863.029	4484865.110	822.922
487 389872.638 4484861.445 823.315 488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	485	389866.263	4484863.904	823.145
488 389876.210 4484847.242 822.960 489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	486	389869.166	4484862.792	823.235
489 389874.755 4484846.723 823.166 490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	487	389872.638	4484861.445	823.315
490 389877.990 4484837.318 822.769 491 389878.558 4484836.694 822.698	488	389876.210	4484847.242	822.960
491 389878.558 4484836.694 822.698	489	389874.755	4484846.723	823.166
	490	389877.990	4484837.318	822.769
492 389882.523 4484834.883 822.453	491	389878.558	4484836.694	822.698
	492	389882.523	4484834.883	822.453

NUM	Х	Υ	Z
493	389879.487	4484834.253	822.443
494	389878.099	4484833.675	822.655
495	389880.560	4484824.718	822.210
496	389880.326	4484824.651	822.183
497	389880.153	4484824.483	822.216
498	389879.154	4484822.486	821.995
499	389879.245	4484822.368	822.018
500	389881.641	4484819.577	821.986
501	389881.848	4484819.493	821.861
502	389881.170	4484827.654	822.125
503	389882.818	4484820.948	821.752
504	389883.814	4484812.640	821.465
505	389884.780	4484812.952	821.284
506	389886.336	4484805.569	820.856
507	389885.846	4484805.732	820.878
508	389885.080	4484807.593	821.047
509	389886.113	4484807.930	820.905
510	389887.825	4484801.670	820.387
511	389886.865	4484801.297	820.634
512	389889.383	4484792.260	819.633
513	389889.856	4484791.504	819.579
514	389889.872	4484790.879	819.492
515	389889.739	4484791.315	819.477
516	389890.649	4484791.638	819.390
517	389892.492	4484785.196	818.658
518	389891.523	4484784.855	818.787
519	389891.215	4484784.755	818.732
520	389891.461	4484783.863	818.713
521	389891.765	4484783.883	818.731
522	389892.503	4484781.422	818.438
523	389893.387	4484778.146	817.899
524	389893.088	4484778.018	817.884
525	389893.891	4484775.360	817.792
526	389894.222	4484775.420	817.753
527	389894.543	4484774.280	817.598
528	389894.365	4484778.490	817.837
529	389895.206	4484775.503	817.540
530	389896.157	4484772.203	817.129
531	389895.923	4484769.295	817.029
532	389895.178	4484771.624	817.165
533	389895.474	4484771.490	817.247

NUM	х	Υ	Z
534	389895.528	4484770.961	817.241
535	389896.091	4484769.320	817.072
536	389896.776	4484768.291	816.899
537	389897.138	4484767.589	816.836
538	389897.139	4484765.224	816.695
539	389897.365	4484764.314	816.582
540	389899.164	4484761.453	816.015
541	389898.272	4484760.944	816.114
542	389901.047	4484752.033	815.662
543	389901.712	4484751.684	815.513
544	389895.328	4484751.016	815.134
545	389895.358	4484750.332	815.029
546	389905.354	4484752.161	815.351
547	389902.047	4484751.567	815.365
548	389902.849	4484752.140	815.336
549	389901.039	4484754.742	815.524
550	389901.868	4484751.658	815.372
551	389901.173	4484750.837	815.297
552	389899.655	4484750.269	815.152
553	389895.380	4484750.695	815.049
554	389901.663	4484743.559	814.265
555	389901.690	4484742.355	814.265
556	389900.219	4484741.395	814.214
557	389901.726	4484742.289	815.002
558	389901.788	4484742.206	815.313
559	389901.978	4484742.204	815.318
560	389901.931	4484743.692	815.322
561	389901.730	4484743.736	815.322
562	389901.689	4484743.608	815.030
563	389900.703	4484744.218	814.325
564	389895.043	4484743.325	814.043
565	389899.721	4484743.900	814.357
566	389901.453	4484744.184	815.089
567	389899.506	4484745.329	814.971
568	389895.588	4484745.650	814.830
569	389895.811	4484747.447	814.975
570	389899.722	4484746.592	815.062
571	389902.251	4484744.435	815.181
572	389902.104	4484741.854	815.165
573	389901.253	4484738.291	815.067
574	389899.196	4484739.001	814.466
·	1		

NUM	Х	Υ	Z
575	389894.726	4484740.349	813.991
576	389892.445	4484734.521	813.923
577	389896.737	4484732.433	814.572
578	389898.279	4484731.922	814.944
579	389894.794	4484726.937	814.847
580	389894.143	4484727.337	814.782
581	389892.884	4484728.419	815.020
582	389889.600	4484730.793	814.422
583	389883.821	4484723.576	814.735
584	389886.986	4484721.235	815.241
585	389888.314	4484719.998	814.879
586	389889.106	4484719.234	814.842
587	389883.964	4484711.437	814.713
588	389885.081	4484712.649	814.785
589	389884.178	4484713.487	814.773
590	389884.072	4484712.421	814.747
591	389881.959	4484711.439	814.651
592	389880.791	4484712.332	814.780
593	389879.178	4484713.861	815.391
594	389876.190	4484716.366	814.902
595	389870.684	4484707.757	814.841
596	389873.654	4484705.916	814.814
597	389874.920	4484704.582	814.324
598	389875.656	4484703.973	814.247
599	389869.760	4484696.524	813.800
600	389868.788	4484697.299	813.836
601	389866.504	4484698.858	814.581
602	389863.796	4484700.566	814.020
603	389859.316	4484692.634	813.731
604	389861.962	4484690.865	813.697
605	389863.105	4484689.928	813.212
606	389864.104	4484688.961	813.241
607	389859.166	4484681.566	812.768
608	389857.728	4484682.565	812.659
609	389856.425	4484683.257	812.795
610	389854.281	4484684.572	812.704
611	389850.900	4484677.630	812.099
612	389853.517	4484676.232	812.074
613	389854.990	4484675.188	812.343
614	389851.333	4484667.741	811.978
615	389850.476	4484668.128	811.878

NUM	Х	Υ	Z
616	389848.557	4484668.875	811.358
617	389844.933	4484671.136	811.127
618	389842.221	4484663.359	810.509
619	389844.874	4484661.925	810.928
620	389847.408	4484660.619	811.660
621	389848.081	4484660.346	811.731
622	389844.736	4484650.669	811.498
623	389843.986	4484650.850	811.451
624	389841.871	4484651.462	810.937
625	389837.612	4484653.075	810.571
626	389836.532	4484645.781	810.708
627	389839.016	4484644.622	810.802
628	389842.530	4484643.306	811.280
629	389840.212	4484638.006	811.084
630	389841.040	4484634.596	811.078
631	389838.302	4484635.168	810.774
632	389833.877	4484635.941	810.495
633	389833.080	4484626.941	810.171
634	389836.270	4484626.760	810.480
635	389840.071	4484626.277	810.822
636	389835.199	4484620.128	810.239
637	389830.488	4484618.282	809.711
638	389830.304	4484614.603	809.648
639	389835.503	4484615.611	810.200
640	389837.139	4484606.310	810.020
641	389833.775	4484607.216	809.757
642	389829.297	4484607.869	809.357
643	389827.926	4484598.340	808.658
644	389830.702	4484596.923	808.876
645	389833.765	4484595.667	809.206
646	389829.727	4484586.459	808.528
647	389827.350	4484587.188	808.166
648	389823.441	4484588.546	807.427
649	389820.170	4484579.281	807.007
650	389822.858	4484577.887	807.558
651	389825.564	4484576.562	808.039
652	389823.646	4484575.025	807.783
653	389820.762	4484574.827	807.238
654	389817.578	4484576.016	806.542
655	389816.486	4484573.893	806.353
656	389818.644	4484572.906	806.839

NUM	Х	Υ	Z
657	389820.915	4484571.145	807.513
658	389821.078	4484567.130	807.783
659	389819.775	4484567.655	807.482
660	389817.139	4484568.744	806.638
661	389814.136	4484561.639	806.308
662	389816.060	4484563.233	806.531
663	389816.836	4484560.714	806.740
664	389816.981	4484561.299	806.742
665	389816.360	4484561.896	806.718
666	389817.039	4484561.290	807.232
667	389817.051	4484561.271	807.414
668	389817.254	4484561.192	807.414
669	389817.048	4484560.653	807.409
670	389816.862	4484560.705	807.401
671	389816.842	4484560.673	807.191
672	389815.692	4484560.305	806.606
673	389817.985	4484561.469	807.643
674	389818.496	4484560.929	807.730
675	389816.985	4484556.999	807.659
676	389816.479	4484557.133	807.561
677	389813.865	4484558.093	806.311
678	389811.644	4484550.833	806.023
679	389814.156	4484549.546	807.407
680	389814.863	4484549.249	807.590
681	389813.708	4484542.298	807.464
682	389812.457	4484542.425	807.261
683	389808.148	4484542.985	805.455
684	389808.275	4484537.415	805.320
685	389811.452	4484536.157	807.179
686	389813.208	4484536.004	807.376
687	389813.928	4484528.957	807.248
688	389812.322	4484528.656	807.026
689	389809.944	4484528.588	805.836
690	389810.800	4484521.300	805.652
691	389813.907	4484521.270	806.860
692	389815.520	4484521.471	807.061
693	389817.652	4484513.852	806.733
694	389816.194	4484513.391	806.530
695	389813.600	4484512.669	805.564
696	389816.293	4484505.092	805.238
697	389819.552	4484505.542	806.042

NUM	Х	Υ	Z
698	389820.760	4484505.743	806.216
699	389824.339	4484495.971	805.722
700	389822.803	4484495.384	805.481
701	389819.187	4484494.452	804.685
702	389823.221	4484485.222	804.498
703	389827.648	4484486.229	805.396
704	389830.415	4484478.214	805.024
705	389827.805	4484477.491	804.279
706	389823.716	4484476.180	803.815
707	389827.225	4484468.308	803.118
708	389830.100	4484468.716	803.542
709	389833.148	4484470.291	804.793
710	389834.185	4484464.811	803.731
711	389834.000	4484465.399	803.737
712	389832.203	4484465.724	803.681
713	389834.039	4484465.412	804.603
714	389834.042	4484465.379	804.768
715	389834.240	4484465.434	804.762
716	389834.418	4484464.860	804.756
717	389834.222	4484464.821	804.751
718	389834.245	4484464.774	804.603
719	389833.041	4484463.537	803.684
720	389835.302	4484462.207	804.638
721	389832.055	4484461.443	803.291
722	389829.020	4484460.961	802.766
723	389830.705	4484450.307	803.258
724	389833.913	4484450.338	803.725
725	389837.093	4484450.839	804.562
726	389837.488	4484445.003	804.729
727	389835.226	4484444.845	804.459
728	389831.055	4484444.637	803.628
729	389828.758	4484444.474	803.389
730	389827.990	4484435.272	803.613
731	389831.061	4484434.865	804.003
732	389833.702	4484434.354	804.635
733	389839.170	4484436.197	804.618
734	389853.594	4484060.659	786.860
735	389851.283	4484061.258	786.122
736	389848.092	4484061.612	784.588
737	389849.518	4484074.985	784.836
738	389854.291	4484074.237	786.103

NUM	Х	Υ	Z
739	389859.392	4484074.059	786.742
740	389851.024	4484083.572	784.992
741	389856.329	4484082.299	785.867
742	389862.883	4484080.870	786.648
743	389861.013	4484097.002	786.051
744	389852.126	4484092.656	785.024
745	389849.555	4484103.072	786.069
746	389851.928	4484102.889	785.934
747	389852.913	4484103.056	785.454
748	389853.996	4484108.599	785.899
749	389854.814	4484102.656	785.881
750	389858.548	4484102.673	786.316
751	389844.289	4484120.715	785.694
752	389851.393	4484121.885	786.499
753	389853.814	4484121.630	786.442
754	389854.867	4484121.728	786.074
755	389855.952	4484121.753	786.433
756	389856.425	4484130.654	786.658
757	389855.153	4484131.264	786.264
758	389854.153	4484131.431	786.559
759	389851.791	4484131.671	786.708
760	389848.900	4484132.043	786.515
761	389846.731	4484132.968	786.020
762	389847.128	4484137.984	785.430
763	389849.233	4484138.415	786.685
764	389851.644	4484139.103	786.843
765	389854.292	4484139.909	786.702
766	389855.335	4484140.068	786.444
767	389856.434	4484140.306	786.779
768	389844.725	4484149.428	785.400
769	389847.155	4484150.007	786.998
770	389849.700	4484150.495	787.197
771	389852.162	4484150.843	787.055
772	389853.241	4484151.180	786.681
773	389854.159	4484151.341	787.170
774	389851.487	4484159.473	787.259
775	389850.613	4484159.686	786.904
776	389849.525	4484159.489	787.360
777	389847.369	4484158.648	787.493
778	389842.349	4484157.472	785.946
779	389844.368	4484158.474	787.341

NUM	Х	Υ	Z
780	389844.569	4484166.584	787.904
781	389846.551	4484167.322	787.754
782	389847.655	4484167.418	787.249
783	389848.660	4484167.786	788.078
784	389846.083	4484177.053	788.739
785	389844.586	4484177.138	787.853
786	389843.921	4484177.148	787.982
787	389840.883	4484176.787	788.331
788	389838.364	4484176.386	788.155
789	389833.894	4484175.624	786.201
790	389833.981	4484182.180	786.838
791	389837.726	4484182.689	788.192
792	389840.512	4484182.957	788.366
793	389842.969	4484183.078	788.144
794	389843.866	4484183.032	787.987
795	389846.168	4484183.038	788.954
796	389845.730	4484191.376	788.854
797	389843.950	4484191.571	788.138
798	389843.405	4484191.623	788.303
799	389840.641	4484191.584	788.529
800	389837.702	4484191.851	788.275
801	389834.864	4484192.646	787.346
802	389847.525	4484197.783	788.950
803	389844.804	4484198.296	788.221
804	389844.219	4484198.448	788.465
805	389841.381	4484198.891	788.649
806	389838.761	4484199.347	788.408
807	389836.611	4484199.387	787.809
808	389832.790	4484199.974	787.034
809	389834.194	4484208.483	787.250
810	389837.772	4484209.098	787.883
811	389840.554	4484209.022	788.705
812	389843.487	4484208.469	788.953
813	389845.965	4484207.890	788.742
814	389846.964	4484207.528	788.538
815	389849.114	4484207.169	789.169
816	389851.176	4484218.576	789.501
817	389849.171	4484219.261	788.888
818	389848.182	4484219.552	789.252
819	389845.355	4484220.215	789.504
820	389837.289	4484221.312	788.246

NUM	х	Υ	Z
821	389841.177	4484222.013	788.943
822	389843.259	4484221.883	789.243
823	389843.347	4484234.722	789.715
824	389846.048	4484234.341	789.945
825	389842.599	4484246.369	789.817
826	389847.204	4484246.101	790.507
827	389848.682	4484246.064	790.698
828	389850.396	4484253.717	791.258
829	389849.216	4484254.226	791.131
830	389853.403	4484229.065	790.113
831	389851.771	4484229.614	789.349
832	389850.661	4484229.889	789.794
833	389847.903	4484230.342	789.963
834	389856.791	4484244.723	791.138
835	389855.305	4484245.553	790.308
836	389854.445	4484246.039	790.738
837	389851.362	4484247.071	790.991
838	389852.624	4484273.026	792.883
839	389853.836	4484272.744	792.544
840	389855.179	4484272.295	792.708
841	389859.068	4484254.626	791.863
842	389857.590	4484255.205	790.955
843	389856.625	4484255.361	791.469
844	389853.372	4484256.289	791.675
845	389862.831	4484269.813	792.852
846	389861.231	4484270.342	792.156
847	389860.146	4484270.663	792.598
848	389857.385	4484271.562	792.781
849	389865.862	4484279.366	793.403
850	389863.971	4484280.486	792.877
851	389862.940	4484280.881	793.270
852	389860.386	4484281.738	793.492
853	389863.900	4484292.237	794.412
854	389866.146	4484291.789	794.167
855	389867.252	4484291.490	793.665
856	389868.897	4484290.708	794.059
857	389872.289	4484301.271	795.145
858	389870.093	4484302.099	794.948
859	389866.579	4484302.557	795.486
860	389869.352	4484310.579	796.219
861	389873.379	4484312.907	796.342

NUM	Х	Υ	Z
862	389871.542	4484309.259	796.068
863	389869.673	4484303.536	795.430
864	389869.347	4484302.511	795.337
865	389871.909	4484305.322	795.601
866	389876.282	4484308.792	796.265
867	389880.686	4484313.317	797.098
868	389885.005	4484317.289	797.837
869	389880.562	4484319.533	797.682
870	389878.345	4484316.724	797.354
871	389875.911	4484313.864	796.848
872	389874.883	4484312.783	796.567
873	389873.857	4484313.317	796.396
874	389874.318	4484313.474	796.029
875	389874.195	4484314.113	796.332
876	389871.206	4484314.812	796.605
877	389885.483	4484326.313	797.484
878	389884.755	4484327.333	796.704
879	389884.223	4484328.000	796.993
880	389884.039	4484328.176	797.034
881	389882.564	4484329.741	797.231
882	389878.551	4484330.691	797.073
883	389889.219	4484332.909	796.682
884	389885.640	4484334.711	797.289
885	389887.491	4484333.352	797.161
886	389887.986	4484333.052	797.036
887	389890.881	4484331.652	797.421
888	389893.483	4484337.421	796.907
889	389892.419	4484338.117	796.671
890	389891.755	4484338.596	796.919
891	389889.800	4484339.313	797.200
892	389888.275	4484339.937	797.361
893	389891.537	4484343.913	797.145
894	389890.154	4484343.645	797.320
895	389888.517	4484343.909	797.456
896	389887.736	4484347.963	797.515
897	389889.763	4484348.168	797.425
898	389891.004	4484348.264	797.318
899	389889.643	4484352.599	797.482
900	389889.141	4484350.691	797.472
901	389896.289	4484343.357	796.707
902	389895.471	4484345.771	796.168

NUM	Х	Υ	Z
903	389892.093	4484345.041	795.839
904	389891.961	4484344.310	797.302
905	389891.693	4484345.587	797.333
906	389894.166	4484347.345	796.141
907	389891.943	4484345.503	797.322
908	389892.151	4484344.464	797.320
909	389893.782	4484343.828	796.292
910	389894.386	4484342.589	796.597
911	389893.822	4484343.897	796.196
912	389892.151	4484344.464	795.941
913	389891.943	4484345.503	795.877
914	389894.234	4484347.399	796.095
915	389893.704	4484347.672	796.277
916	389891.969	4484350.321	796.679
917	389888.705	4484356.205	797.277
918	389893.745	4484348.210	796.357
919	389893.693	4484348.797	796.577
920	389891.981	4484351.360	797.122
921	389889.771	4484355.497	797.396
922	389889.432	4484357.055	797.427
923	389888.313	4484356.455	797.292
924	389886.717	4484355.917	797.715
925	389884.036	4484355.323	797.847
926	389881.055	4484360.603	798.249
927	389883.198	4484361.687	798.065
928	389884.497	4484362.662	797.690
929	389884.998	4484363.141	797.933
930	389878.219	4484373.173	799.238
931	389877.043	4484372.467	798.481
932	389876.387	4484372.098	798.892
933	389873.847	4484371.433	799.105
934	389869.949	4484387.245	800.680
935	389870.053	4484383.917	799.372
936	389869.383	4484383.619	799.695
937	389867.009	4484382.091	799.934
938	389861.625	4484391.316	800.708
939	389864.008	4484393.029	800.507
940	389864.666	4484393.557	800.217
941	389866.377	4484394.594	801.056
942	389861.959	4484401.971	801.271
943	389857.082	4484400.479	801.504

NUM	х	Υ	Z
944	389855.948	4484402.668	801.697
945	389860.152	4484402.322	800.884
946	389858.878	4484402.527	801.350
947	389859.595	4484403.895	801.378
948	389862.510	4484404.215	801.507
949	389860.676	4484406.600	801.529
950	389858.136	4484406.972	801.562
951	389856.343	4484407.071	801.782
952	389853.449	4484406.817	802.104
953	389855.841	4484407.896	801.888
954	389857.017	4484408.598	801.465
955	389858.412	4484409.343	801.682
956	389853.828	4484418.533	802.758
957	389851.884	4484418.102	802.366
958	389851.034	4484417.819	802.831
959	389848.115	4484416.793	803.063
960	389849.357	4484427.077	804.148
961	389848.094	4484426.750	803.469
962	389847.147	4484426.679	803.711
963	389844.708	4484425.934	803.941
964	389846.103	4484435.056	804.797
965	389845.174	4484435.284	804.037
966	389841.871	4484434.713	804.544
967	389844.312	4484435.326	804.289
968	389834.430	4485022.497	826.035
969	389826.981	4485030.987	826.118
970	389819.627	4485038.614	826.312
971	389810.921	4485047.140	826.517
972	389802.086	4485055.982	826.987
973	389824.031	4485039.671	826.524
974	389816.765	4485046.916	826.681
975	389809.580	4485054.109	826.877
976	389827.936	4485083.134	829.255
977	389825.703	4485081.383	829.154
978	389825.209	4485080.969	829.185
979	389824.568	4485080.532	828.997
980	389823.991	4485080.034	829.113
981	389817.490	4485074.793	828.614
982	389817.594	4485074.635	828.605
983	389809.218	4485067.896	828.071
984	389802.719	4485062.720	827.602

NUM	Х	Υ	Z
985	389803.912	4485061.467	827.380
986	389811.778	4485053.624	826.896
987	389812.124	4485053.292	826.804
988	389812.265	4485053.373	826.807
989	389814.712	4485050.860	826.754
990	389814.670	4485050.744	826.701
991	389816.228	4485049.210	826.714
992	389819.844	4485045.564	826.666
993	389819.967	4485045.640	826.685
994	389820.676	4485044.946	826.677
995	389820.579	4485044.850	826.662
996	389804.003	4485059.830	827.288
997	389802.621	4485063.097	827.649
998	389806.323	4485065.775	827.837
999	389807.521	4485066.684	827.942
1000	389813.718	4485072.141	828.330
1001	389814.290	4485072.483	828.370
1002	389817.835	4485075.152	828.663
1003	389819.157	4485076.177	828.724
1004	389819.123	4485076.196	828.695
1005	389824.726	4485080.325	829.128
1006	389825.293	4485080.785	829.212
1007	389825.898	4485081.204	829.230
1008	389828.053	4485082.939	829.279
1009	389829.887	4485085.552	829.342
1010	389829.099	4485084.915	829.262
1011	389825.913	4485082.353	829.045
1012	389825.103	4485081.710	829.005
1013	389814.995	4485073.604	828.305
1014	389809.181	4485068.939	827.959
1015	389802.056	4485063.243	827.468
1016	389801.900	4485063.072	827.451
1017	389801.606	4485062.596	827.406
1018	389801.455	4485062.094	827.353
1019	389801.446	4485061.552	827.297
1020	389801.614	4485060.961	827.234
1021	389810.300	4485052.281	826.654
1022	389811.047	4485051.568	826.615
1023	389813.914	4485048.705	826.560
1024	389814.636	4485047.945	826.549
1025	389819.101	4485043.486	826.438

NUM	X	Υ	Z
1026	389826.175	4485036.410	826.295
1027	389830.497	4485032.086	826.207
1027	389832.650	4485029.927	826.175
1029	389831.380	4485034.410	826.332
1030	389833.137	4485032.351	826.264
1030	389833.137	4485032.732	826.153
1031	389834.369	4485031.977	826.174
	389834.065		826.217
1033		4485031.448	
1034	389833.611	4485031.926	826.390
1035	389836.476	4485029.227	826.311
1036	389835.504	4485027.681	826.291
1037	389837.524	4485025.575	826.266
1038	389837.108	4485027.048	826.313
1039	389837.381	4485026.468	826.293
1040	389837.707	4485025.859	826.284
1041	389838.718	4485024.903	826.273
1042	389836.887	4485028.484	826.335
1043	389833.182	4485032.199	826.390
1044	389832.417	4485032.967	826.393
1045	389831.683	4485033.700	826.383
1046	389830.912	4485034.468	826.345
1047	389827.527	4485037.835	826.484
1048	389830.589	4485037.313	826.174
1049	389825.962	4485042.794	826.449
1050	389822.291	4485043.091	826.581
1051	389822.316	4485043.149	826.590
1052	389828.232	4485046.477	826.527
1053	389832.255	4485038.045	826.105
1054	389832.507	4485038.122	826.113
1055	389833.836	4485035.227	826.101
1056	389833.659	4485035.106	826.052
1057	389834.209	4485034.116	825.992
1058	389834.382	4485034.175	825.974
1059	389834.808	4485033.261	826.010
1060	389834.599	4485033.148	826.061
1061	389836.019	4485030.259	826.099
1062	389836.930	4485028.423	826.306
1063	389838.374	4485025.388	826.303
1064	389840.977	4485024.862	826.530
1065	389844.101	4485024.300	826.801
1066	389846.438	4485024.332	826.977

NUM	Х	Υ	Z
1067	389849.200	4485024.463	827.207
1068	389850.696	4485024.725	827.312
1069	389838.437	4485024.181	826.125
1070	389839.439	4485023.447	826.263
1071	389840.320	4485022.895	826.352
1072	389841.236	4485022.448	826.426
1073	389842.193	4485022.105	826.495
1074	389842.365	4485022.960	826.520
1075	389846.828	4485023.134	826.867
1076	389848.297	4485022.492	826.920
1077	389846.997	4485022.298	826.841
1078	389847.949	4485022.572	826.908
1079	389848.916	4485022.824	826.966
1080	389849.868	4485023.122	827.027
1081	389835.990	4485021.716	826.096
1082	389837.431	4485017.738	826.189
1083	389840.469	4485017.879	826.322
1084	389849.338	4485020.129	826.955
1085	389842.772	4485013.442	826.600
1086	389848.806	4485016.864	826.891
1087	389841.405	4485013.408	826.413
1088	389841.113	4485012.950	826.398
1089	389840.874	4485012.390	826.496
1090	389840.806	4485011.843	826.414
1091	389840.774	4485011.345	826.442
1092	389848.450	4485015.398	827.047
1093	389841.589	4485012.210	826.580
1094	389843.354	4485005.233	826.786
1095	389841.746	4484995.834	826.915
1096	389844.647	4484996.293	826.993
1097	389845.531	4484994.487	827.765
1098	389845.934	4484995.034	827.174
1099	389845.271	4484994.815	827.193
1100	389845.486	4484994.073	827.196
1101	389846.161	4484994.217	827.232
1102	389846.571	4484992.522	827.269
1103	389845.666	4484992.328	827.120
1104	389843.346	4484991.480	827.068
1105	389845.778	4484980.074	827.345
1106	389849.547	4484980.943	827.601
1107	389850.652	4484976.382	827.558

NUM	Х	Υ	Z
1108	389847.861	4484983.550	827.381
1109	389849.372	4484977.636	827.422
1110	389850.149	4484974.670	827.282
1111	389846.981	4484975.612	827.307
1112	389849.311	4484966.080	826.826
1113	389852.183	4484966.597	826.866
1114	389853.070	4484966.877	827.044
1115	389854.638	4484958.974	826.647
1116	389855.169	4484958.179	826.650
1117	389854.381	4484958.009	826.462
1118	389854.027	4484946.528	825.869
1119	389858.471	4484945.258	825.982
1120	389857.604	4484945.189	825.824
1121	389860.802	4484935.962	825.562
1122	389860.835	4484935.601	825.566
1123	389860.139	4484935.282	825.354
1124	389860.595	4484934.928	825.329
1125	389861.081	4484934.769	825.306
1126	389861.618	4484934.769	825.309
1127	389867.442	4484937.778	825.787
1128	389868.105	4484936.722	825.405
1129	389868.665	4484933.131	825.261
1130	389870.255	4484928.342	825.314
1131	389863.311	4484930.936	825.111
1132	389864.512	4484928.359	825.001
1133	389864.084	4484926.948	825.110
1134	389863.068	4484926.839	825.103
1135	389863.265	4484926.224	825.075
1136	389869.638	4484929.679	825.160
1137	389863.240	4484927.717	824.996
1138	389862.876	4484927.453	824.981
1139	389862.545	4484926.982	824.947
1140	389862.374	4484926.469	824.918
1141	389866.708	4484912.205	824.486
1142	389865.650	4484914.760	824.680
1143	389863.927	4484905.076	824.119
1144	389868.191	4484906.434	824.396
1145	389868.786	4484901.243	824.128
1146	389869.391	4484901.390	824.318
1147	389870.331	4484894.946	824.007
1148	389871.623	4484895.087	824.823

NUM	Х	Υ	Z
1149	389872.438	4484895.282	824.836
1150	389872.438	4484895.282	824.536
1151	389872.460	4484895.039	824.587
1152	389872.460	4484895.039	824.467
1153	389871.623	4484895.087	824.523
1154	389871.645	4484894.844	824.575
1155	389871.645	4484894.844	824.295
1156	389870.991	4484894.862	824.200
1157	389872.727	4484895.210	824.631
1158	389873.215	4484893.041	824.284
1159	389873.376	4484892.946	824.347
1160	389874.265	4484889.560	824.319
1161	389873.708	4484890.844	824.273
1162	389872.378	4484889.342	823.961
1163	389871.466	4484890.669	823.899
1164	389874.187	4484880.226	823.905
1165	389874.362	4484878.932	823.732
1166	389872.157	4484871.661	823.505
1167	389878.424	4484863.581	823.624
1168	389878.270	4484863.218	823.552
1169	389875.611	4484862.313	823.352
1170	389882.514	4484847.395	823.231
1171	389882.519	4484846.402	823.100
1172	389880.040	4484844.704	822.911
1173	389885.676	4484834.967	822.458
1174	389885.220	4484835.117	822.651
1175	389882.814	4484833.532	822.392
1176	389884.851	4484825.653	822.015
1177	389888.026	4484826.462	822.303
1178	389887.366	4484826.457	822.124
1179	389888.574	4484824.333	822.121
1180	389888.725	4484824.142	822.047
1181	389889.404	4484820.832	821.961
1182	389889.401	4484820.625	821.921
1183	389889.298	4484818.419	821.587
1184	389889.906	4484818.511	821.721
1185	389889.771	4484816.470	821.484
1186	389887.364	4484813.832	821.306
1187	389890.286	4484814.521	821.335
1188	389890.996	4484814.801	821.359
1189	389891.103	4484814.056	821.499

NUM	Х	Υ	Z
1190	389889.745	4484805.797	820.639
1191	389892.639	4484806.510	820.660
1192	389893.489	4484806.504	820.787
1193	389897.114	4484793.939	819.607
1194	389896.261	4484793.726	819.582
1195	389893.885	4484793.203	819.498
1196	389901.375	4484779.571	818.109
1197	389900.435	4484779.292	818.001
1198	389897.468	4484778.774	817.857
1199	389903.613	4484771.491	817.195
1200	389900.060	4484770.142	816.938
1201	389902.889	4484770.911	816.985
1202	389903.915	4484771.010	817.008
1203	389907.355	4484759.399	815.882
1204	389906.257	4484759.244	815.793
1205	389908.124	4484756.911	815.666
1206	389909.052	4484752.307	815.428
1207	389908.029	4484757.146	815.696
1208	389912.825	4484754.756	814.546
1209	389917.626	4484752.491	814.834
1210	389907.659	4484754.368	815.511
1211	389908.279	4484752.315	815.471
1212	389909.232	4484751.920	815.309
1213	389909.247	4484743.150	814.641
1214	389909.002	4484743.751	815.338
1215	389908.985	4484742.416	815.345
1216	389910.850	4484741.580	814.500
1217	389911.006	4484741.735	814.464
1218	389909.201	4484742.594	815.343
1219	389909.228	4484743.686	815.346
1220	389910.408	4484744.939	814.559
1221	389910.424	4484744.905	814.465
1222	389909.289	4484743.658	814.255
1223	389909.271	4484742.576	814.332
1224	389911.047	4484741.742	814.386
1225	389904.879	4484751.420	815.348
1226	389907.901	4484752.411	815.438
1227	389911.596	4484755.119	814.535
1228	389915.300	4484752.185	814.681
1229	389915.012	4484746.095	814.574
1230	389911.477	4484745.369	814.401

NUM	Х	Υ	Z
1231	389908.347	4484746.188	815.326
1232	389905.856	4484746.412	815.267
1233	389905.024	4484739.968	815.192
1234	389908.211	4484739.103	815.072
1235	389909.290	4484739.015	814.655
1236	389909.329	4484737.824	814.971
1237	389908.285	4484734.946	815.063
1238	389906.322	4484730.198	815.059
1239	389905.448	4484730.342	814.984
1240	389904.402	4484731.430	815.043
1241	389901.777	4484732.576	815.092
1242	389899.026	4484727.262	815.072
1243	389901.478	4484725.465	814.989
1244	389902.479	4484724.800	814.793
1245	389903.642	4484724.012	815.428
1246	389897.210	4484715.719	815.244
1247	389895.942	4484716.436	814.553
1248	389894.976	4484716.838	814.892
1249	389892.283	4484718.506	815.000
1250	389885.490	4484710.623	814.783
1251	389887.183	4484708.910	814.620
1252	389887.596	4484708.025	814.250
1253	389888.622	4484706.758	815.016
1254	389881.287	4484699.225	814.548
1255	389879.709	4484699.798	813.752
1256	389879.123	4484700.460	814.200
1257	389877.175	4484701.882	814.299
1258	389870.849	4484694.274	813.804
1259	389872.719	4484692.584	813.623
1260	389873.376	4484692.064	813.221
1261	389874.255	4484690.948	813.928
1262	389867.547	4484680.896	813.145
1263	389866.215	4484681.513	812.572
1264	389865.396	4484682.081	812.895
1265	389863.098	4484683.725	813.035
1266	389861.512	4484671.989	812.230
1267	389860.767	4484671.996	812.030
1268	389859.951	4484672.539	812.367
1269	389857.615	4484673.793	812.427
1270	389852.693	4484664.819	811.995
1271	389855.029	4484663.580	811.857

NUM	Х	Υ	Z
1272	389855.817	4484663.041	811.595
1273	389856.573	4484662.483	811.759
1274	389852.866	4484653.486	811.474
1275	389851.971	4484653.496	811.223
1276	389851.214	4484653.786	811.521
1277	389848.726	4484654.477	811.604
1278	389845.898	4484646.335	811.393
1279	389848.416	4484645.384	811.240
1280	389849.243	4484645.072	810.999
1281	389850.403	4484644.384	811.454
1282	389847.938	4484634.075	811.111
1283	389846.962	4484633.941	810.632
1284	389846.026	4484633.946	810.974
1285	389843.388	4484634.313	811.090
1286	389842.131	4484623.603	810.794
1287	389845.174	4484623.281	810.669
1288	389846.084	4484623,250	810.299
1289	389847.373	4484623.082	810.903
1290	389845.735	4484611.328	810.364
1291	389844.740	4484611.213	809.821
1292	389843.801	4484611.309	810.295
1293	389840.753	4484611.475	810.399
1294	389839.330	4484602.390	809.971
1295	389841.643	4484601.505	809.781
1296	389842.507	4484600.973	809.259
1297	389843.139	4484600.794	809.712
1298	389840.198	4484592.186	809.089
1299	389839.390	4484592.121	808.672
1300	389838.336	4484592.466	809.100
1301	389835.851	4484593.031	809.226
1302	389835.594	4484580.623	808.626
1303	389834.097	4484581.272	808.169
1304	389833.347	4484581.447	808.400
1305	389831.260	4484582.371	808.506
1306	389826.434	4484572.773	808.071
1307	389828.953	4484571.592	808.000
1308	389829.638	4484571.089	807.785
1309	389830.927	4484570.095	808.329
1310	389826.702	4484560.429	808.227
1311	389825.259	4484560.901	807.475
1312	389824.503	4484561.200	807.747

NUM	Х	Υ	Z
1313	389821.583	4484562.020	807.789
1314	389824.539	4484558.569	806.749
1315	389824.635	4484558.018	807.553
1316	389824.983	4484558.959	807.549
1317	389824.058	4484557.998	807.945
1318	389824.270	4484559.407	807.949
1319	389824.508	4484559.319	807.956
1320	389824.535	4484559.310	807.399
1321	389824.972	4484559.149	807.429
1322	389825.043	4484559.122	807.569
1323	389825.223	4484559.056	807.577
1324	389824.756	4484557.752	807.585
1325	389824.562	4484557.820	807.579
1326	389824.462	4484557.855	807.443
1327	389824.084	4484557.988	807.404
1328	389823.812	4484558.084	807.948
1329	389818.827	4484555.271	807.655
1330	389821.603	4484553.987	807.544
1331	389822.416	4484553.490	807.314
1332	389823.575	4484552.421	807.892
1333	389819.876	4484542.781	807.875
1334	389818.977	4484543.151	807.120
1335	389818.478	4484543.213	807.204
1336	389816.093	4484543.374	807.418
1337	389820.695	4484532.630	807.711
1338	389819.341	4484532.479	806.974
1339	389818.546	4484532.411	807.138
1340	389816.418	4484532.279	807.265
1341	389822.888	4484522.457	807.507
1342	389821.514	4484521.990	806.587
1343	389820.763	4484521.713	806.953
1344	389818.322	4484520.843	807.052
1345	389826.980	4484512.302	806.596
1346	389825.599	4484511.348	805.948
1347	389824.558	4484510.879	806.437
1348	389822.264	4484509.878	806.493
1349	389830.894	4484500.255	806.284
1350	389829.636	4484499.714	805.427
1351	389828.656	4484499.471	805.896
1352	389826.236	4484499.059	805.962
1353	389835.914	4484487.705	805.711

NUM	х	Υ	Z
1354	389834.608	4484487.088	804.916
1355	389833.727	4484486.663	805.341
1356	389831.656	4484485.860	805.457
1357	389834.826	4484476.637	805.174
1358	389837.020	4484477.227	804.997
1359	389838.221	4484477.399	804.809
1360	389839.690	4484477.329	805.040
1361	389843.148	4484470.858	804.724
1362	389840.683	4484470.105	804.520
1363	389839.321	4484469.521	804.843
1364	389837.218	4484468.731	804.977
1365	389841.265	4484466.565	804.610
1366	389840.826	4484467.889	804.683
1367	389841.275	4484468.094	804.458
1368	389841.827	4484468.233	804.491
1369	389842.300	4484466.884	804.378
1370	389841.760	4484466.642	804.383
1371	389841.530	4484466.613	804.419
1372	389841.299	4484466.544	804.576
1373	389842.059	4484466.824	804.622
1374	389841.926	4484466.777	804.405
1375	389841.541	4484466.648	804.399
1376	389841.518	4484466.641	805.024
1377	389841.302	4484466.567	805.040
1378	389840.843	4484467.881	805.017
1379	389841.071	4484467.960	805.014
1380	389841.115	4484467.975	804.448
1381	389841.489	4484468.101	804.462
1382	389841.597	4484468.140	804.630
1383	389841.814	4484468.215	804.636
1384	389842.252	4484466.890	804.634
1385	389841.204	4484467.773	803.819
1386	389841.650	4484467.916	803.825
1387	389841.938	4484467.012	803.824
1388	389841.514	4484466.855	803.814
1389	389841.352	4484467.338	803.808
1390	389838.671	4484463.391	804.906
1391	389841.201	4484463.721	804.722
1392	389842.515	4484463.842	804.306
1393	389844.289	4484464.195	804.596
1394	389845.759	4484454.287	804.947

NUM	х	Υ	Z
1395	389843.813	4484453.694	804.301
1396	389840.162	4484452.742	804.839
1397	389842.385	4484453.215	804.728
1398	389843.128	4484443.854	804.678
1399	389844.211	4484443.798	804.402
1400	389845.812	4484443.586	805.202
1401	389846.109	4484434.986	804.792
1402	389842.075	4484434.723	804.510
1403	389805.487	4483912.339	776.985
1404	389852.990	4484082.754	785.586
1405	389793.460	4484048.332	779.128
1406	389767.671	4483880.201	772.886
1407	389766.558	4483875.205	772.781
1408	389764.959	4483883.409	773.328
1409	389765.461	4483883.081	773.044
1410	389765.808	4483884.178	772.874
1411	389768.254	4483883.037	773.198
1412	389772.330	4483885.582	772.843
1413	389774.112	4483880.257	771.977
1414	389773.550	4483880.689	772.064
1415	389773.034	4483880.884	772.586
1416	389772.662	4483876.873	772.558
1417	389773.798	4483876.971	772.003
1418	389775.506	4483877.000	772.065
1419	389776.459	4483877.058	772.454
1420	389777.730	4483888.905	772.445
1421	389778.298	4483886.553	772.253
1422	389778.824	4483886.336	772.178
1423	389779.853	4483886.123	772.853
1424	389777.499	4483893.382	772.334
1425	389778.157	4483893.526	772.253
1426	389779.024	4483893.447	773.117
1427	389777.256	4483899.917	772.480
1428	389778.478	4483899.719	772.560
1429	389779.500	4483899.491	773.513
1430	389780.411	4483908.664	772.708
1431	389781.134	4483908.456	773.184
1432	389781.953	4483908.207	773.752
1433	389781.321	4483918.175	773.368
1434	389781.840	4483917.526	773.107
1435	389783.304	4483916.478	773.142

NUM	Х	Υ	Z
1436	389784.682	4483916.219	774.237
1437	389785.800	4483926.392	773.134
1438	389787.182	4483925.906	773.515
1439	389787.856	4483925.788	774.206
1440	389787.135	4483936.862	773.600
1441	389787.610	4483936.792	773.495
1442	389788.483	4483935.988	773.597
1443	389788.784	4483935.558	774.183
1444	389790.200	4483940.927	773.922
1445	389790.562	4483940.537	773.737
1446	389791.325	4483940.605	773.800
1447	389791.484	4483940.068	774.625
1448	389792.055	4483945.824	774.074
1449	389792.062	4483945.362	773.918
1450	389792.815	4483945.183	773.949
1451	389793.340	4483944.926	774.732
1452	389793.881	4483948.875	774.581
1453	389794.080	4483952.123	774.422
1454	389796.128	4483954.282	774.616
1455	389799.513	4483954.142	775.543
1456	389787.900	4483897.827	774.310
1457	389783.721	4483893.582	773.602
1458	389781.753	4483888.024	773.170
1459	389779.671	4483871.246	772.939
1460	389785.474	4483867.553	775.792
1461	389785.540	4483873.644	775.378
1462	389784.524	4483880.735	775.638
1463	389786.644	4483884.984	775.793
1464	389787.893	4483892.228	775.812
1465	389790.405	4483899.448	775.008
1466	389782.562	4483896.068	773.686
1467	389787.187	4483903.944	774.156
1468	389793.043	4483903.728	774.995
1469	389797.848	4483913.113	775.068
1470	389792.496	4483914.186	774.771
1471	389792.310	4483912.424	774.523
1472	389791.927	4483910.553	774.747
1473	389786.184	4483909.405	774.086
1474	389786.627	4483911.957	774.012
1475	389786.909	4483914.027	774.228
1476	389792.597	4483921.830	774.509

NUM	Х	Υ	Z
1477	389792.186	4483926.719	774.324
1478	389793.180	4483935.521	774.609
1479	389800.383	4483934.924	776.012
1480	389805.650	4483908.112	777.079
1481	389813.067	4483909.119	777.843
1482	389820.476	4483912.362	778.407
1483	389817.825	4483907.388	778.707
1484	389813.402	4483902.008	779.369
1485	389807.246	4483900.671	778.813
1486	389801.255	4483900.452	777.603
1487	389798.117	4483891.443	778.006
1488	389804.214	4483888.653	779.138
1489	389797.835	4483878.218	778.421
1490	389795.387	4483867.927	777.842
1491	389789.824	4483870.351	777.448
1492	389789.230	4483870.481	776.780
1493	389792.111	4483878.928	777.901
1494	389791.702	4483879.207	777.307
1495	389794.388	4483890.957	777.841
1496	389793.737	4483891.017	777.310
1497	389797.826	4483899.629	777.408
1498	389797.450	4483899.389	776.766
1499	389799.521	4483906.416	776.369
1500	389799.162	4483906.485	775.631
1501	389801.176	4483912.075	776.337
1502	389800.780	4483912.196	775.232
1503	389801.994	4483916.433	776.830
1504	389801.388	4483916.318	775.642
1505	389798.491	4483922.463	775.714
1506	389799.430	4483923.234	776.393
1507	389797.042	4483928.455	775.418
1508	389798.162	4483928.748	776.122
1509	389798.025	4483936.258	775.541
1510	389795.975	4483937.031	774.983
1511	389797.858	4483945.852	775.167
1512	389768.537	4484059.298	783.253
1513	389775.745	4484063.227	782.512
1514	389773.425	4484055.928	782.346
1515	389810.978	4483919.980	778.653
1516	389807.350	4483920.314	777.500
1517	389804.541	4483914.432	776.881

NUM	х	Υ	Z
1518	389809.586	4483915.421	777.303
1519	389816.135	4483916.388	778.251
1520	389823.332	4483916.660	779.277
1521	389823.519	4483915.687	779.923
1522	389823.386	4483917.584	779.883
1523	389822.962	4483922.691	780.167
1524	389822.963	4483922.686	780.167
1525	389818.090	4483923.162	779.615
1526	389810.021	4483924.401	778.531
1527	389802.387	4483924.848	776.788
1528	389801.158		776.136
		4483937.945	
1529	389804.617	4483937.128	777.015
1530	389813.064	4483935.193	779.192
1531	389821.140	4483933.159	780.831
1532	389825.359	4483943.277	781.027
1533	389820.619	4483943.934	780.080
1534	389811.133	4483945.981	778.086
1535	389801.460	4483948.032	776.083
1536	389811.484	4483957.508	777.618
1537	389818.863	4483956.121	778.967
1538	389826.591	4483954.251	780.674
1539	389829.367	4483962.510	780.867
1540	389823.765	4483964.819	779.532
1541	389815.631	4483965.962	778.080
1542	389814.331	4483976.555	776.580
1543	389819.408	4483976.322	777.513
1544	389826.919	4483973.893	779.110
1545	389832.206	4483972.417	780.555
1546	389835.983	4483980.415	781.473
1547	389825.296	4483983.618	779.245
1548	389814.297	4483983.900	777.486
1549	389815.792	4483991.511	777.891
1550	389825.506	4483993.336	779.775
1551	389835.188	4483994.686	781.859
1552	389835.768	4484004.658	782.038
1553	389825.490	4484005.699	780.683
1554	389814.591	4484006.868	778.682
1555	389813.327	4484018.665	778.834
1556	389818.880	4484018.581	779.707
1557	389826.618	4484018.413	781.365
1558	389837.271	4484016.341	783.210

NUM	х	Υ	Z
1559	389837.236	4484025.218	783.145
1560	389826.323	4484026.854	781.248
1561	389817.711	4484028.499	779.758
1562	389815.176	4484029.082	779.273
1563	389813.718	4484032.382	778.849
1564	389817.580	4484032.366	780.742
1565	389819.534	4484031.940	780.004
1566	389817.579	4484036.644	780.174
1567	389819.169	4484036.772	779.566
1568	389823.493	4484035.623	780.182
1569	389832.418	4484035.221	782.195
1570	389839.053	4484034.288	783.566
1571	389837.656	4484042.634	782.641
1572	389831.831	4484042.303	781.854
1573	389826.683	4484040.004	780.807
1574	389822.183	4484040.630	779.827
1575	389820.388	4484043.957	779.641
1576	389822.474	4484043.737	780.506
1577	389827.634	4484052.916	781.246
1578	389838.235	4484054.728	782.890
1579	389839.437	4484065.815	783.640
1580	389830.720	4484058.045	781.568
1581	389820.795	4484051.934	780.232
1582	389816.067	4484044.044	778.648
1583	389813.079	4484036.619	778.194
1584	389807.421	4484031.720	777.526
1585	389807.245	4484019.418	777.375
1586	389808.778	4484010.395	777.413
1587	389808.882	4483999.829	776.961
1588	389808.645	4483990.524	775.887
1589	389810.120	4483979.568	775.945
1590	389811.771	4483970.098	776.975
1591	389810.003	4483962.757	777.413
1592	389806.085	4483957.773	776.750
1593	389801.107	4483953.947	775.787
1594	389842.584	4483977.837	782.486
1595	389843.844	4483984.274	782.658
1596	389843.860	4483988.907	782.847
1597	389852.705	4484110.768	786.127
1598	389851.931	4484103.177	785.900
1599	389850.844	4484094.220	785.563

NUM	Х	Υ	Z
1600	389847.416	4484064.889	784.838
1601	389846.749	4484055.751	784.767
1602	389846.324	4484046.153	784.772
1603	389841.424	4484039.440	784.534
1604	389841.610	4484047.005	784.591
1605	389842.099	4484056.099	784.708
1606	389842.828	4484064.469	784.853
1607	389842.900	4484077.189	784.051
1608	389843.032	4484076.409	784.810
1609	389843.269	4484077.806	784.747
1610	389841.707	4484078.502	784.179
1611	389841.990	4484077.424	783.769
1612	389842.064	4484076.145	784.155
1613	389839.852	4484075.717	783.324
1614	389838.800	4484076.320	782.964
1615	389833.723	4484073.030	782.397
1616	389834.486	4484072.308	782.058
1617	389834.958	4484071.767	782.317
1618	389827.181	4484063.717	780.917
1619	389826.379	4484064.681	780.617
1620	389825.740	4484065.492	780.992
1621	389816.151	4484070.997	780.163
1622	389821.309	4484076.279	780.918
1623	389828.658	4484085.377	782.020
1624	389836.764	4484092.301	783.143
1625	389829.597	4484096.953	782.176
1626	389831.299	4484102.550	781.756
1627	389835.361	4484099.591	782.454
1628	389841.117	4484095.358	783.410
1629	389843.224	4484099.912	784.095
1630	389843.449	4484108.324	784.661
1631	389844.638	4484112.637	784.516
1632	389839.961	4484108.118	783.569
1633	389833.525	4484107.418	782.259
1634	389833.631	4484119.765	783.562
1635	389842.173	4484119.554	785.369
1636	389846.330	4484119.646	785.848
1637	389847.192	4484126.914	786.747
1638	389840.609	4484128.691	786.068
1639	389833.438	4484129.902	784.138
1640	389835.958	4484134.855	783.931

NUM	Х	Υ	Z
1641	389842.003	4484134.465	785.209
1642	389846.753	4484133.397	785.879
1643	389847.955	4484115.042	786.138
1644	389847.255	4484105.196	785.841
1645	389846.452	4484098.862	785.582
1646	389844.598	4484094.690	785.225
1647	389815.929	4484093.364	778.950
1648	389817.288	4484090.265	778.667
1649	389813.029	4484086.763	778.826
1650	389807.911	4484080.438	778.626
1651	389808.958	4484079.428	777.711
1652	389809.986	4484078.667	777.683
1653	389812.273	4484083.618	778.050
1654	389813.348	4484083.121	777.961
1655	389818.635	4484088.911	778.376
1656	389817.887	4484089.474	778.223
1657	389817.707	4484092.197	778.304
1658	389818.813	4484091.937	778.361
1659	389818.050	4484096.222	778.496
1660	389818.925	4484095.974	778.569
1661	389820.304	4484100.545	778.701
1662	389819.567	4484101.030	778.723
1663	389820.992	4484105.938	778.918
1664	389820.301	4484106.237	778.802
1665	389823.599	4484107.802	779.008
1666	389824.428	4484107.601	778.976
1667	389825.474	4484112.260	778.826
1668	389826.212	4484112.405	779.101
1669	389825.698	4484116.173	779.096
1670	389826.060	4484121.314	779.191
1671	389826.357	4484127.414	779.266
1672	389830.995	4484131.195	783.127
1673	389830.450	4484124.934	782.737
1674	389829.220	4484115.800	781.555
1675	389827.542	4484107.986	780.819
1676	389825.939	4484100.491	781.530
1677	389824.169	4484092.124	781.319
1678	389820.464	4484083.077	780.670
1679	389812.995	4484074.314	779.703
1680	389852.977	4484082.747	785.589
1681	389793.460	4484048.338	779.122

1682 389757.236 4484014.758 782.131 1683 389812.707 4484126.657 779.945 1684 389817.145 448412.835 779.800 1685 389810.992 4484118.912 779.774 1686 389816.935 4484115.723 779.736 1687 389804.920 4484106.612 779.666 1689 389804.347 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 389807.096 448408.825 779.018 1692 38979.384 4484078.793 778.883 1693 389797.863 4484078.793 778.883 1694 389792.384 4484076.587 778.883 1695 389793.036 4484076.587 778.885 1696 389773.036 4484047.507 782.333 1699 389763.703 4484047.507 782.333 1699 389765.977 4484045.267 781.531 1701 389778.234 4484045.	NUM	Х	Υ	Z
1683 389812.707 4484126.657 779.945 1684 389817.145 4484124.835 779.800 1685 389810.992 4484118.912 779.774 1686 389816.935 4484115.723 779.750 1687 389812.882 4484106.670 779.666 1688 389804.920 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 389807.096 4484089.825 779.018 1692 38979.384 448408.822 778.898 1693 38979.863 4484076.587 778.883 1694 389791.384 4484076.587 778.883 1695 389791.314 4484066.958 778.885 1696 389771.314 4484047.507 782.333 1699 389763.703 4484047.507 782.333 1699 389765.977 4484047.507 782.333 1701 389771.968 4484047.970 780.148 1702 389783.484 4484073.				_
1684 389817.145 4484124.835 779.880 1685 389810.992 4484118.912 779.774 1686 389816.935 4484115.723 779.750 1687 389812.882 4484106.612 779.736 1688 389804.920 4484098.908 779.177 1690 389811.211 4484098.908 779.018 1691 389807.096 4484089.825 779.018 1692 389799.338 4484086.822 778.838 1693 389792.384 448406.958 778.834 1694 389792.384 448406.958 778.834 1695 389790.217 448406.958 778.834 1696 389773.036 448404.259 781.566 1697 38971.314 448407.507 782.333 1698 389765.977 4484047.507 782.333 1699 389763.703 4484047.507 781.531 1701 389771.968 4484047.970 780.148 1702 389781.417 448405.692<			. 10 101 117 00	
1685 389810.992 4484118.912 779.774 1686 389816.935 4484115.723 779.750 1687 389812.882 4484106.612 779.736 1688 389804.920 4484106.670 779.666 1689 389804.347 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 389807.096 4484089.825 779.018 1692 38979.383 4484076.587 778.883 1693 38979.2384 448406.958 778.883 1694 38979.2384 448406.958 778.883 1695 38979.217 448406.958 778.885 1696 389773.036 4484047.507 782.333 1699 389763.703 4484047.507 782.333 1699 389763.703 4484047.507 782.333 1700 389766.012 4484045.267 781.531 1701 389771.968 4484045.267 789.451 1703 389783.488 44805.497<	1000			
1686 389816.935 4484115.723 779.756 1687 389812.882 4484106.612 779.736 1688 389804.920 4484106.670 779.666 1689 389804.347 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 38970.906 4484089.825 779.018 1692 389799.384 448407.93 778.838 1693 389792.384 448406.958 778.834 1695 389792.314 448406.958 778.885 1696 389773.036 448404.8259 781.566 1697 38971.314 4484047.507 782.333 1698 389763.703 4484047.507 782.333 1699 389763.703 4484047.507 782.333 1700 389766.012 4484045.267 781.531 1701 389771.968 448407.970 780.148 1703 389781.417 448405.417 779.451 1704 389785.950 448405.177 <td></td> <td></td> <td></td> <td></td>				
1687 389812.882 4484106.612 779.736 1688 389804.920 4484106.670 779.666 1689 389804.347 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 389807.096 4484089.825 779.018 1692 389799.938 448408.822 778.888 1693 389797.863 4484078.793 778.884 1694 389792.384 4484066.958 778.885 1695 389773.036 4484048.259 781.566 1697 389771.314 4484047.507 782.333 1698 389765.977 4484047.507 782.333 1699 389766.012 4484047.507 782.353 1700 389775.194 4484045.267 781.531 1701 389771.968 448404.203 780.470 1702 389781.417 448405.692 779.739 1704 389781.417 448405.417 779.451 1705 389783.488 4484060.1				_
1688 389804.920 4484106.670 779.666 1689 389804.347 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 389807.096 4484089.825 779.018 1692 389799.938 4484086.822 778.888 1693 389797.863 4484078.793 778.834 1694 389792.384 4484066.958 778.885 1696 389773.036 4484048.259 781.566 1697 389765.977 4484047.507 782.333 1698 389765.977 4484047.507 782.333 1699 389766.012 4484047.507 782.333 1700 389766.012 4484045.267 781.531 1701 389771.968 4484047.970 780.148 1703 389778.234 448405.692 779.739 1704 389781.417 448405.177 779.451 1705 389783.488 448406.117 779.144 1706 389786.950 4484093.				
1689 389804.347 4484098.908 779.177 1690 389811.211 4484095.684 779.052 1691 389807.096 4484089.825 779.018 1692 389799.938 4484086.822 778.888 1693 389797.863 4484078.793 778.834 1695 389790.217 4484066.958 778.885 1696 389773.036 4484048.259 781.566 1697 389771.314 4484047.100 781.398 1698 389765.977 4484047.507 782.333 1699 389763.703 4484045.267 781.531 1701 389771.968 4484045.267 781.531 1701 389771.968 4484047.970 780.148 1702 389775.194 4484050.692 779.739 1704 389781.417 448405.4177 779.451 1705 389783.488 448060.117 779.444 1706 389786.950 4484073.415 778.981 1707 389788.990 448408				
1690 389811.211 4484095.684 779.052 1691 389807.096 4484089.825 779.018 1692 389799.938 4484086.822 778.898 1693 389797.863 4484078.793 778.834 1694 389792.384 4484066.958 778.885 1695 389773.036 4484048.259 781.566 1697 389771.314 4484047.100 781.398 1698 389765.977 4484047.507 782.333 1699 389763.703 4484045.267 781.531 1700 389771.968 4484045.267 781.531 1701 389771.968 4484047.970 780.448 1702 389775.194 448405.692 779.739 1704 389781.417 448405.692 779.739 1704 389781.417 4484060.117 779.144 1705 389783.488 4484067.749 778.981 1707 38978.148 4484073.415 778.993 1708 389788.990 4484095.				773.000
1691 389807.096 4484089.825 779.018 1692 389799.938 4484086.822 778.898 1693 389797.863 4484076.587 778.834 1694 389792.384 4484066.958 778.885 1695 389790.217 4484066.958 778.885 1696 389771.314 4484047.100 781.398 1698 389765.977 4484047.507 782.333 1699 389763.703 4484045.267 781.531 1700 389771.968 4484045.267 781.531 1701 389771.968 448404.203 780.470 1702 389781.417 4484050.692 779.739 1704 389781.417 4484050.692 779.739 1704 389781.417 448405.4177 779.451 1705 389783.488 4484073.415 778.981 1707 389787.148 4484073.415 778.981 1703 389782.104 4484085.987 778.953 1710 389796.312 448409				
1692 389799.938 4484086.822 778.898 1693 389797.863 4484078.793 778.834 1694 389792.384 4484076.587 778.834 1695 389790.217 4484066.958 778.885 1696 389773.036 4484048.259 781.566 1697 389771.314 4484047.507 782.333 1698 389765.977 4484047.507 782.333 1700 389766.012 4484045.267 781.531 1701 389771.968 448404.203 780.470 1702 389778.234 4484050.692 779.739 1704 389781.417 4484050.692 779.739 1705 389783.488 4484060.117 779.144 1706 389786.950 4484067.749 778.981 1707 389787.148 4484073.415 778.953 1708 389789.90 4484085.987 778.953 1710 389792.104 4484085.987 778.953 1711 389798.546 4484105				
1693 389797.863 4484078.793 778.883 1694 389792.384 4484076.587 778.834 1695 389790.217 4484066.958 778.885 1696 389773.036 4484048.259 781.566 1697 389771.314 4484047.507 782.333 1698 389765.977 4484047.597 782.353 1700 389766.012 4484045.267 781.531 1701 389771.968 448404.203 780.470 1702 389775.194 4484050.692 779.739 1704 389781.417 4484054.177 779.451 1705 389783.488 4484060.117 779.144 1706 389786.950 4484067.749 778.981 1707 389787.148 4484073.415 778.981 1708 389788.990 4484080.153 778.820 1709 389792.104 4484095.25 779.024 1711 389796.321 4484096.225 779.062 1712 389798.546 4484114				
1694 389792.384 4484076.587 778.834 1695 389790.217 4484066.958 778.885 1696 389773.036 4484048.259 781.566 1697 389771.314 4484047.100 781.398 1698 389765.977 4484047.507 782.333 1699 389763.703 4484045.267 781.531 1701 389771.968 4484045.267 781.531 1702 389775.194 4484047.970 780.148 1703 389781.417 4484054.177 779.451 1705 389783.488 4484060.117 779.144 1706 389786.950 4484067.749 778.981 1707 389787.148 4484073.415 778.981 1703 389788.990 4484080.153 778.820 1709 389792.104 4484085.987 778.953 1710 389798.546 4484096.225 779.062 1711 389798.546 4484105.481 779.704 1713 389807.324 44841				
1695 389790.217 4484066.958 778.885 1696 389773.036 4484048.259 781.566 1697 389771.314 4484047.100 781.398 1698 389765.977 4484047.507 782.333 1699 389763.703 4484047.759 782.353 1700 389766.012 4484045.267 781.531 1701 389771.968 4484047.970 780.148 1702 389775.194 4484050.692 779.739 1704 389781.417 4484054.177 779.451 1705 389783.488 4484060.117 779.144 1706 389785.950 4484067.749 778.981 1707 389787.148 4484073.415 778.943 1708 389788.990 4484080.153 778.953 1710 389795.104 4484095.987 778.953 1711 389796.321 4484096.225 779.062 1712 389798.546 4484105.481 779.764 1713 389803.054 44841	1693		4484078.793	778.883
1696389773.0364484048.259781.5661697389771.3144484047.100781.3981698389765.9774484047.507782.3331699389763.7034484047.759782.3531700389766.0124484045.267781.5311701389771.9684484046.203780.4701702389775.1944484050.692779.7391704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484073.415778.9431708389788.9904484080.153778.8201709389792.1044484091.070779.0241711389796.0124484091.070779.0241711389796.3214484096.225779.0621712389785.464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484128.560780.0331718389820.4334484128.560780.0331719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1694	389792.384	4484076.587	778.834
1697389771.3144484047.100781.3981698389765.9774484047.507782.3331699389763.7034484045.267781.5311700389766.0124484045.267781.5311701389771.9684484046.203780.4701702389775.1944484050.692779.7391704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484080.153778.9201709389792.1044484085.987778.9531710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484122.679779.9621714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484128.560780.0331718389820.4334484128.560780.0331719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1695	389790.217	4484066.958	778.885
1698389765.9774484047.507782.3331699389763.7034484047.759782.3531700389766.0124484045.267781.5311701389771.9684484046.203780.4701702389775.1944484047.970780.148170338978.2344484050.692779.7391704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484073.415778.9431708389788.9904484080.153778.9531710389792.1044484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484118.652779.8311720389821.9474484118.652779.8311721389820.8504484115.402779.790	1696	389773.036	4484048.259	781.566
1699 389763.703 4484047.759 782.353 1700 389766.012 4484045.267 781.531 1701 389771.968 4484046.203 780.470 1702 389775.194 4484050.692 779.739 1704 389781.417 4484054.177 779.451 1705 389783.488 4484060.117 779.144 1706 389786.950 4484067.749 778.981 1707 389787.148 4484073.415 778.943 1708 389788.990 4484080.153 778.820 1709 389792.104 4484091.070 779.024 1711 389796.012 4484091.070 779.062 1712 38978.546 4484105.481 779.704 1713 389803.054 4484114.666 779.876 1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389817.483 4484128.560 780.033 1718 389820.433 448412	1697	389771.314	4484047.100	781.398
1700 389766.012 4484045.267 781.531 1701 389771.968 4484046.203 780.470 1702 389775.194 4484047.970 780.148 1703 389778.234 4484050.692 779.739 1704 389781.417 4484054.177 779.451 1705 389783.488 4484060.117 779.144 1706 389786.950 4484067.749 778.981 1707 389787.148 4484080.153 778.943 1709 389792.104 4484085.987 778.953 1710 389796.012 4484091.070 779.024 1711 389796.321 4484096.225 779.062 1712 389798.546 4484105.481 779.704 1713 389803.054 4484114.666 779.876 1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484126.759 780.103 1719 389821.980 4484118.652 <td>1698</td> <td>389765.977</td> <td>4484047.507</td> <td>782.333</td>	1698	389765.977	4484047.507	782.333
1701389771.9684484046.203780.4701702389775.1944484047.970780.1481703389778.2344484050.692779.7391704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484080.153778.8201709389792.1044484085.987778.9531710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484111.17779.8941720389821.9474484118.652779.790	1699	389763.703	4484047.759	782.353
1702389775.1944484047.970780.1481703389778.2344484050.692779.7391704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484073.415778.9431708389788.9904484080.153778.8201709389792.1044484091.070779.0241711389796.0124484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484111.17779.8941720389821.9474484118.652779.790	1700	389766.012	4484045.267	781.531
1703389778.2344484050.692779.7391704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484073.415778.9431708389788.9904484080.153778.8201709389792.1044484091.070779.0241711389796.0124484091.070779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1701	389771.968	4484046.203	780.470
1704389781.4174484054.177779.4511705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484073.415778.9431708389788.9904484080.153778.8201709389792.1044484095.987778.9531710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1702	389775.194	4484047.970	780.148
1705389783.4884484060.117779.1441706389786.9504484067.749778.9811707389787.1484484073.415778.9431708389788.9904484080.153778.9531710389792.1044484091.070779.0241711389796.0124484091.070779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1703	389778.234	4484050.692	779.739
1706 389786.950 4484067.749 778.981 1707 389787.148 4484073.415 778.943 1708 389788.990 4484080.153 778.820 1709 389792.104 4484095.987 778.953 1710 389796.012 4484091.070 779.024 1711 389796.321 4484096.225 779.062 1712 389798.546 4484105.481 779.704 1713 389803.054 4484114.666 779.876 1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484111.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1704	389781.417	4484054.177	779.451
1707389787.1484484073.415778.9431708389788.9904484080.153778.8201709389792.1044484085.987778.9531710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1705	389783.488	4484060.117	779.144
1708389788.9904484080.153778.8201709389792.1044484085.987778.9531710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1706	389786.950	4484067.749	778.981
1709389792.1044484085.987778.9531710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1707	389787.148	4484073.415	778.943
1710389796.0124484091.070779.0241711389796.3214484096.225779.0621712389798.5464484105.481779.7041713389803.0544484114.666779.8761714389807.3244484122.679779.9621715389810.3354484130.913780.1141716389814.3924484129.998779.9811717389817.4834484128.560780.0331718389820.4334484126.759780.1031719389821.9804484121.117779.8941720389821.9474484118.652779.8311721389820.8504484115.402779.790	1708	389788.990	4484080.153	778.820
1711 389796.321 4484096.225 779.062 1712 389798.546 4484105.481 779.704 1713 389803.054 4484114.666 779.876 1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1709	389792.104	4484085.987	778.953
1712 389798.546 4484105.481 779.704 1713 389803.054 4484114.666 779.876 1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1710	389796.012	4484091.070	779.024
1713 389803.054 4484114.666 779.876 1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1711	389796.321	4484096.225	779.062
1714 389807.324 4484122.679 779.962 1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1712	389798.546	4484105.481	779.704
1715 389810.335 4484130.913 780.114 1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1713	389803.054	4484114.666	779.876
1716 389814.392 4484129.998 779.981 1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1714	389807.324	4484122.679	779.962
1717 389817.483 4484128.560 780.033 1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1715	389810.335	4484130.913	780.114
1718 389820.433 4484126.759 780.103 1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1716	389814.392	4484129.998	779.981
1719 389821.980 4484121.117 779.894 1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1717	389817.483	4484128.560	780.033
1720 389821.947 4484118.652 779.831 1721 389820.850 4484115.402 779.790	1718	389820.433	4484126.759	780.103
1721 389820.850 4484115.402 779.790	1719	389821.980	4484121.117	779.894
	1720	389821.947	4484118.652	779.831
1722 389819.824 4484108 835 779 627	1721	389820.850	4484115.402	779.790
303013.024 4404100.033 773.027	1722	389819.824	4484108.835	779.627

NUM	Х	Υ	Z
1723	389819.013	4484104.048	779.423
1724	389817.792	4484099.107	779.374
1724			779.215
	389814.950	4484094.274	
1726	389815.681	4484093.951	779.148
1727	389813.362	4484090.145	779.258
1728	389809.571	4484085.280	778.964
1729	389806.302	4484082.983	779.026
1730	389803.492	4484079.731	778.917
1731	389798.894	4484074.151	778.628
1732	389794.522	4484068.832	778.557
1733	389790.566	4484062.074	778.875
1734	389801.878	4484057.900	778.941
1735	389800.595	4484057.101	779.041
1736	389797.084	4484056.337	778.967
1737	389796.419	4484058.498	778.812
1738	389796.953	4484061.315	778.823
1739	389797.591	4484063.800	778.817
1740	389798.559	4484068.677	778.599
1741	389796.825	4484069.225	778.423
1742	389797.731	4484070.849	778.272
1743	389801.358	4484073.123	778.249
1744	389803.763	4484077.616	778.407
1745	389806.371	4484074.150	777.498
1746	389804.697	4484074.859	777.542
1747	389803.578	4484068.258	777.359
1748	389802.630	4484068.666	777.295
1749	389801.596	4484063.257	777.252
1750	389800.933	4484063.292	777.290
1751	389801.790	4484060.566	777.215
1752	389803.955	4484058.945	777.223
1753	389806.503	4484072.112	777.765
1754	389807.615	4484068.154	778.036
1755	389808.741	4484064.204	778.085
1756	389807.455	4484061.367	778.124
1757	389811.458	4484071.826	779.557
1758	389811.822	4484068.872	779.546
1759	389811.092	4484063.756	779.299
1760	389809.531	4484059.759	779.335
1761	389807.094	4484058.709	779.318
1762	389823.356	4484060.664	780.338
1763	389822.703	4484061.242	779.995

1764 389818.247 4484057.187 779	Z
1703 303010:044 4404030:241 773	.568
1766 389814.890 4484051.746 779	.261
	3.788
	3.027
	7.735
	.733
2776 000000021 11010001007 777	
	.647
	7.910
	3.171
	.143
	.147
	5.915
	5.679
	5.831
1779 389807.550 4484045.186 777	'.103
1780 389810.297 4484048.249 777	'.650
1781 389811.504 4484050.614 777	'.979
1782 389810.127 4484050.403 777	.864
1783 389803.926 4484050.537 777	.100
1784 389809.031 4484050.709 777	.404
1785 389807.132 4484048.555 777	.086
1786 389803.860 4484047.827 777	.022
1787 389805.891 4484046.180 776	.809
	.730
1789 389805.218 4484039.747 776	.452
1790 389804.552 4484039.583 776	.436
1791 389805.265 4484032.455 776	.213
1792 389804.066 4484031.606 776	5.178
1793 389804.865 4484024.632 775	.792
1794 389803.744 4484024.494 775	.831
1795 389804.018 4484019.223 775	.601
1796 389803.261 4484019.298 775	.680
1797 389803.647 4484013.526 775	.465
1798 389802.707 4484013.089 775	.351
1799 389803.763 4484008.106 775	.302
1800 389804.803 4484008.070 775	.274
1801 389805.588 4483990.978 774	.862
1802 389806.361 4483991.096 774	.795
1803 389805.026 4483994.840 774	.953
1804 389805.961 4483995.289 775	.026

NUM	х	Υ	Z
1805	389804.618	4484000.662	775.131
1806	389805.576	4484000.479	775.140
1807	389806.749	4483973.084	774.591
1808	389806.155	4483973.201	774.536
1809	389807.145	4483967.764	774.437
1810	389806.370	4483967.828	774.414
1811	389806.734	4483965.040	774.409
1812	389806.135	4483965.460	774.316
1813	389804.587	4483962.067	774.309
1814	389803.620	4483962.308	774.283
1815	389802.449	4483958.445	774.313
1816	389801.963	4483958.658	774.315
1817	389798.930	4483955.883	774.208
1818	389798.481	4483956.286	774.182
1819	389794.873	4483954.991	774.096
1820	389794.417	4483955.463	774.105
1821	389792.609	4483950.898	774.114
1822	389792.128	4483951.659	774.226
1823	389791.021	4483952.281	774.281
1824	389793.752	4483953.400	774.133
1825	389793.369	4483952.445	774.087
1826	389793.750	4483950.888	773.995
1827	389793.209	4483953.672	774.069
1828	389792.048	4483953.618	774.390
1829	389792.048	4483954.108	774.662
1830	389793.396	4483955.581	774.448
1831	389796.063	4483956.962	774.516
1832	389800.647	4483958.251	774.610
1833	389802.611	4483962.020	774.810
1834	389804.809	4483964.257	774.764
1835	389805.527	4483967.023	774.811
1836	389804.778	4483973.401	775.164
1837	389804.379	4483979.975	775.461
1838	389803.193	4483993.488	775.663
1839	389802.229	4483997.880	775.863
1840	389801.334	4484004.958	776.019
1841	389800.942	4484014.491	776.501
1842	389801.047	4484023.147	776.816
1843	389801.569	4484033.028	777.215
1844	389802.214	4484040.573	777.505
1845	389801.830	4484044.532	777.610

NUM	Х	Υ	Z
1846	389800.362	4484047.672	778.104
1847	389801.173	4484050.566	779.034
1848	389803.273	4484051.326	779.338
1849	389803.799	4484051.320	777.136
1850		4484051.515	777.270
	389805.905		
1851	389807.931	4484051.972	777.355
1852	389809.687	4484050.182	777.719
1853	389808.013	4484052.060	778.903
1854	389808.223	4484052.215	779.581
1855	389808.176	4484052.452	779.572
1856	389803.404	4484051.525	779.590
1857	389803.461	4484051.282	779.596
1858	389803.706	4484051.241	778.877
1859	389802.800	4484048.599	777.590
1860	389800.503	4484060.350	777.209
1861	389802.362	4484058.374	777.203
1862	389804.435	4484058.772	777.368
1863	389806.555	4484059.153	777.603
1864	389807.252	4484060.879	778.142
1865	389806.653	4484059.137	778.948
1866	389806.675	4484059.028	778.971
1867	389806.919	4484059.021	779.577
1868	389806.965	4484058.781	779.577
1869	389802.139	4484057.848	779.594
1870	389802.105	4484058.082	779.591
1871	389802.277	4484058.202	778.958
1872	389802.265	4484058.331	778.932
1873	389800.437	4484060.324	777.708
1874	389800.909	4484056.469	779.154
1875	389806.373	4484058.107	779.361
1876	389810.026	4484059.667	779.443
1877	389814.371	4484062.671	779.787
1878	389819.893	4484067.790	780.459
1879	389825.664	4484073.326	781.408
1880	389831.691	4484079.021	782.432
1881	389836.714	4484083.961	783.468
1882	389840.966	4484088.499	784.421
1883	389847.992	4484118.689	786.216
1884	389848.428	4484124.661	786.419
1885	389848.905	4484133.253	786.496
1886	389854.250	4484133.739	786.608

NUM	Х	Υ	Z
1887	389854.039	4484127.172	786.469
1888	389853.514	4484119.526	786.371
1889	389849.998	4484085.994	785.304
1890	389849.149	4484079.243	785.125
1891	389847.602	4484067.351	784.895
1892	389846.593	4484054.260	784.769
1893	389846.885	4484058.668	784.805
1894	389847.275	4484063.214	784.826
1895	389845.842	4484040.023	784.696
1896	389845.589	4484033.197	784.479
1897	389845.169	4484025.176	784.114
1898	389844.569	4484014.935	783.642
1899	389844.219	4484004.889	783.289
1900	389843.668	4483987.602	782.800
1901	389843.890	4483991.833	782.966
1902	389839.966	4483967.469	782.299
1903	389838.115	4483960.552	782.113
1904	389835.670	4483951.631	781.996
1905	389834.352	4483944.310	781.836
1906	389833.474	4483937.525	781.699
1907	389832.604	4483930.028	781.428
1908	389831.568	4483922.449	781.223
1909	389830.385	4483917.891	781.020
1910	389828.513	4483912.551	780.839
1911	389827.042	4483908.516	780.570
1912	389826.092	4483906.643	780.531
1913	389823.146	4483901.630	780.463
1914	389818.692	4483894.550	780.096
1915	389814.011	4483886.875	779.693
1916	389811.873	4483882.648	779.396
1917	389808.646	4483874.956	778.930
1918	389806.172	4483866.894	778.424
1919	389803.739	4483859.206	777.973
1920	389799.060	4483860.743	778.021
1921	389800.611	4483866.517	778.481
1922	389804.408	4483877.980	779.180
1923	389807.620	4483885.697	779.665
1924	389811.325	4483892.409	780.043
1925	389816.099	4483899.519	780.231
1926	389820.780	4483906.147	780.480
1927	389824.125	4483912.755	780.557

NUM	Х	Υ	Z
1928	389825.269	4483915.405	780.699
1929	389826.099	4483918.721	780.741
1930	389828.274	4483934.607	781.559
1931	389829.844	4483947.104	781.914
1931	389831.530	4483954.491	781.914
1932	389834.756	4483934.491	782.037
1933	389838.181	4483980.297	782.506
1935	389839.428	4483989.660	782.845
1936	389839.517	4483996.650	783.063
1937	389839.480	4484005.148	783.258
1938	389839.904	4484014.443	783.565
1939	389840.737	4484027.937	784.206
1940	389841.196	4484037.344	784.579
1941	389843.253	4484075.546	784.920
1942	389843.311	4484077.693	784.780
1943	389842.683	4484078.535	784.468
1944	389840.617	4484078.351	783.958
1945	389837.827	4484076.876	783.318
1946	389819.747	4484060.613	780.299
1947	389815.196	4484057.223	779.815
1948	389807.999	4484053.561	779.509
1949	389801.411	4484051.475	779.280
1950	389796.246	4484048.208	779.045
1951	389793.775	4484044.497	778.750
1952	389791.068	4484038.048	778.567
1953	389788.030	4484031.282	778.278
1954	389786.306	4484023.923	778.132
1955	389811.247	4484071.555	779.568
1956	389709.009	4484037.059	789.877
1957	389706.366	4484035.466	790.321
1958	389706.199	4484035.778	790.344
1959	389704.702	4484035.302	790.599
1960	389698.014	4484032.469	791.649
1961	389707.628	4484030.700	790.221
1962	389700.134	4484027.219	791.328
1963	389698.798	4484030.229	791.378
1964	389708.014	4484034.511	790.116
1965	389706.603	4484027.579	790.084
1966	389712.467	4484029.702	789.334
1967	389712.570	4484029.605	789.290
1968	389715.363	4484030.617	789.234

NUM	Х	Υ	Z
1969	389715.341	4484030.723	789.236
1970	389717.390	4484032.208	789.064
1971	389717.570	4484031.575	789.118
1972	389718.443	4484031.879	788.417
1973	389717.581	4484033.392	788.626
1974	389717.508	4484033.287	788.668
1975	389718.167	4484031.755	789.109
1976	389718.186	4484031.717	789.095
1977	389718.540	4484031.821	788.387
1978	389721.697	4484027.519	787.015
1979	389724.095	4484024.109	786.301
1980	389728.013	4484018.674	785.516
1981	389715.775	4484010.053	786.183
1982	389714.033	4484012.423	786.374
1983	389711.027	4484016.603	787.189
1984	389709.328	4484018.979	787.975
1985	389709.271	4484019.055	788.137
1986	389705.661	4484024.071	789.700
1987	389703.911	4484026.595	790.412
1988	389701.258	4484025.972	790.795
1989	389707.193	4484017.106	787.992
1990	389707.213	4484017.066	787.970
1991	389710.455	4484012.445	786.636
1992	389712.796	4484009.074	786.316
1993	389713.432	4484008.173	786.002
1994	389713.254	4484008.051	786.042
1995	389712.897	4484008.552	786.188
1996	389709.970	4484005.569	786.533
1997	389710.399	4484005.920	786.210
1998	389710.550	4484005.726	786.131
1999	389707.832	4484003.295	786.082
2000	389704.161	4484000.015	786.255
2001	389705.312	4483998.500	786.056
2002	389702.994	4483996.987	786.335
2003	389701.178	4483997.402	786.954
2004	389701.126	4483997.352	786.919
2005	389700.352	4483996.749	787.188
2006	389700.346	4483996.691	787.269
2007	389699.382	4483992.643	787.042
2008	389696.425	4483993.314	787.844
2009	389696.413	4483993.280	787.877

NUM	Х	Υ	Z
2010	389689.830	4483987.595	788.238
2010	389691.539	4483987.089	787.923
2011	389694.501	4483984.989	787.051
2012	389694.797	4483981.232	786.596
2013	389697.329	4483983.351	786.449
2014	389700.837	4483988.202	786.172
2013	389706.279	4483988.202	785.924
2010	389714.346	4484005.478	785.723
	389724.394	4484013.577	785.468
2018			
2019	389730.199	4484018.296	785.088
2020	389735.118	4484022.185	784.561
2021	389754.035	4484036.841	782.913
2022	389740.554	4484032.477	784.333
2023	389730.867	4484033.358	785.965
2024	389726.456	4484028.699	786.276
2025	389729.957	4484024.141	785.457
2026	389734.438	4484030.410	784.909
2027	389733.746	4484030.431	785.767
2028	389735.947	4484031.647	785.729
2029	389736.320	4484030.955	785.712
2030	389734.114	4484029.756	785.720
2031	389733.097	4484030.306	785.801
2032	389736.079	4484031.955	785.808
2033	389736.699	4484030.848	785.766
2034	389733.698	4484029.212	785.750
2035	389733.656	4484029.196	785.130
2036	389733.045	4484030.331	785.348
2037	389736.083	4484031.979	784.968
2038	389736.733	4484030.847	784.938
2039	389733.692	4484029.190	785.205
2040	389743.829	4484028.625	783.712
2041	389750.268	4484032.567	783.032
2042	389756.063	4484035.731	782.499
2043	389761.222	4484039.039	782.183
2044	389761.224	4484039.224	782.231
2045	389751.726	4484039.716	783.585
2046	389749.109	4484035.510	783.590
2047	389749.549	4484036.468	783.781
2048	389750.415	4484035.977	783.498
2049	389749.933	4484035.290	783.396
2050	389749.758	4484035.951	783.844

NUM	Х	Υ	Z
2051	389749.908	4484039.813	783.843
2052	389743.389	4484039.851	784.795
2053	389737.753	4484039.439	785.648
2054	389730.533	4484038.748	786.878
2055	389722.173	4484036.497	788.222
2056	389719.325	4484035.383	788.525
2057	389714.724	4484033.610	789.167
2058	389710.483	4484031.795	789.789
2059	389757.642	4484044.014	782.769
2060	389756.917	4484048.565	783.357
2061	389757.882	4484053.079	784.023
2062	389752.969	4484049.063	784.060
2063	389750.691	4484050.348	784.548
2064	389751.269	4484048.087	784.317
2065	389748.013	4484047.316	784.564
2066	389747.392	4484047.262	784.703
2067	389743.527	4484046.197	784.756
2068	389742.940	4484045.922	785.008
2069	389739.418	4484045.173	785.478
2070	389728.980	4484042.707	786.932
2071	389718.719	4484040.152	788.492
2072	389717.742	4484039.802	788.684
2073	389715.718	4484039.397	788.992
2074	389712.639	4484038.622	789.539
2075	389712.501	4484038.566	789.501
2076	389709.318	4484037.208	789.807
2077	389710.305	4484035.384	789.794
2078	389713.552	4484036.688	789.346
2079	389718.737	4484038.726	788.623
2080	389726.879	4484041.400	787.319
2081	389734.734	4484042.588	786.197
2082	389743.784	4484043.228	784.851
2083	389743.838	4484043.354	784.806
2084	389744.132	4484044.461	784.697
2085	389743.572	4484046.034	784.755
2086	389747.452	4484047.020	784.626
2087	389748.040	4484044.921	784.243
2088	389748.185	4484043.375	784.141
2089	389748.220	4484043.263	784.186
2090	389752.034	4484043.073	783.646
2091	389759.166	4484042.669	782.604

NUM	Х	Υ	Z
2092	389763.916	4484042.692	781.936
2093	389764.590	4484043.321	781.820
2094	389753.357	4484051.795	784.578
2095	389756.451	4484052.604	784.223
2096	389758.851	4484051.393	783.479
2097	389759.857	4484051.049	783.379
2098	389759.518	4484050.079	783.200
2099	389758.474	4484050.724	783.430
2100	389759.242	4484050.788	783.702
2101	389759.296	4484042.791	782.607
2102	389759.720	4484045.555	782.642
2103	389760.290	4484049.497	782.967
2104	389761.125	4484054.940	783.620
2105	389761.391	4484059.404	783.909
2106	389764.046	4484058.341	783.674
2107	389763.765	4484053.537	783.256
2108	389763.280	4484047.207	782.435
2109	389764.372	4484044.717	781.979
2110	389765.109	4484043.765	781.713
2111	389766.816	4484043.901	781.446
2112	389776.288	4484047.214	780.193
2113	389777.530	4484042.440	780.217
2114	389779.145	4484043.339	780.068
2115	389777.008	4484047.492	780.068
2116	389784.658	4484050.666	779.399
2117	389794.275	4484054.230	779.074
2118	389802.089	4484057.307	779.222
2119	389786.088	4484047.258	779.302
2120	389790.076	4484048.287	779.133
2121	389792.593	4484045.822	778.917
2122	389787.060	4484044.329	778.953
2123	389784.165	4484035.773	778.509
2124	389788.149	4484033.501	778.391
2125	389785.373	4484027.380	778.180
2126	389782.879	4484027.811	778.220
2127	389777.682	4484032.509	778.732
2128	389779.656	4484036.265	778.937
2129	389771.960	4484029.733	779.795
2130	389770.271	4484027.405	779.901
2131	389769.300	4484025.505	779.927
2132	389772.486	4484023.534	778.558

NUM	х	Υ	Z
2133	389773.137	4484026.416	778.667
2134	389773.289	4484027.254	778.638
2134	389777.849	4484029.389	778.638
2136	389781.136	4484035.750	778.540
2130	389783.332	4484041.212	778.860
2137		4484043.761	
2130	389785.022		778.962
	389784.834	4484043.928	779.006
2140	389784.446	4484044.160	779.099
2141	389781.184	4484042.542	779.673
2142	389776.967	4484038.934	780.356
2143	389768.359	4484034.085	781.322
2144	389762.865	4484031.748	782.011
2145	389756.951	4484027.539	782.595
2146	389756.108	4484027.324	782.416
2147	389734.226	4484014.903	784.783
2148	389717.344	4484002.626	785.583
2149	389713.414	4483999.481	785.600
2150	389709.195	4483994.434	785.762
2151	389706.621	4483989.916	785.846
2152	389704.649	4483984.211	785.961
2153	389703.423	4483978.063	785.859
2154	389701.878	4483978.101	785.999
2155	389702.393	4483981.250	786.051
2156	389704.175	4483985.493	786.042
2157	389706.133	4483990.695	785.923
2158	389708.296	4483994.223	785.854
2159	389711.789	4483998.811	785.727
2160	389716.438	4484002.947	785.666
2161	389727.021	4484011.713	785.130
2162	389727.325	4484012.021	785.151
2163	389735.001	4484018.204	784.508
2164	389746.056	4484026.276	783.462
2165	389755.929	4484032.118	782.509
2166	389767.639	4484038.139	781.327
2167	389775.583	4484042.319	780.344
2168	389780.680	4484044.618	779.729
2169	389784.646	4484045.316	779.221
2170	389785.272	4484044.134	778.944
2171	389784.067	4484041.066	778.761
2172	389781.295	4484034.650	778.408
2173	389781.153	4484029.300	778.219

NUM	Х	Υ	Z
2174	389783.002	4484026.946	778.228
2175	389783.225	4484024.015	778.191
2176	389778.142	4484024.978	778.558
2177	389778.829	4484024.894	778.558
2178	389778.971	4484026.001	778.449
2179	389778.295	4484026.081	778.468
2180	389778.854	4484026.682	778.444
2181	389793.698	4484048.687	779.071
2182	389853.145	4484083.105	785.589
2183	389789.668	4483954.255	774.671
2184	389789.239	4483953.884	775.717
2185	389790.124	4483954.721	775.735
2186	389791.930	4483953.864	775.735
2187	389779.554	4483948.658	775.687
2188	389771.972	4483931.703	775.321
2189	389769.349	4483926.325	775.282
2190	389758.456	4483940.320	776.265
2191	389759.543	4483947.085	776.819
2192	389760.496	4483953.532	777.482
2193	389752.728	4483962.323	778.747
2194	389750.130	4483956.034	778.685
2195	389746.639	4483949.005	778.329
2196	389743.900	4483941.689	778.175
2197	389741.079	4483931.729	778.343
2198	389731.683	4483933.027	779.736
2199	389733.292	4483942.711	779.692
2200	389733.508	4483949.049	779.749
2201	389732.858	4483954.656	780.066
2202	389722.037	4483955.842	781.622
2203	389722.188	4483948.943	781.594
2204	389721.332	4483943.285	781.552
2205	389716.450	4483945.085	782.325
2206	389714.505	4483954.677	782.777
2207	389713.874	4483959.523	782.895
2208	389712.881	4483966.507	783.026
2209	389715.017	4483974.215	782.928
2210	389717.201	4483983.465	783.201
2211	389720.290	4483992.210	783.537
2212	389728.568	4483999.285	783.122
2213	389732.123	4484001.788	782.949
2214	389734.995	4483997.753	781.831

v	V	Z
	•	_
		781.693
		781.578
		781.302
		781.655
		781.933
		782.549
389732.590	4484002.209	782.952
389737.839	4484006.656	782.683
389746.840	4484011.826	782.556
389757.351	4484008.867	781.613
389755.480	4484010.999	781.961
389757.510	4484016.435	782.042
389758.730	4484022.783	782.062
389759.656	4484026.103	782.043
389769.427	4484020.729	779.705
389769.294	4484013.435	779.992
389777.015	4484009.048	778.711
389777.509	4484013.937	778.615
389778.076	4484018.877	778.351
389772.282	4484019.521	778.949
389772.196	4484015.852	779.278
389771.455	4484012.430	779.432
389762.416	4484025.377	781.752
389761.724	4484018.768	781.543
389762.193	4484011.992	781.499
389767.679	4483993.843	782.015
389767.245	4483992.912	782.006
389768.193	4483992.497	782.029
389768.605	4483993.437	782.012
389768.864	4483993.581	781.991
389769.787	4483993.166	782.012
389770.194	4483994.111	781.993
389769.271	4483994.504	781.988
389767.747	4483994.060	781.964
389768.682	4483993.674	781.971
389769.074	4483994.585	781.986
389768.166	4483994.985	781.988
389767.552	4483994.130	782.033
389767.956	4483995.068	782.011
389767.043	4483995.449	782.044
389766.631	4483994.494	782.042
	389746.840 389757.351 389755.480 389757.510 389758.730 389759.656 389769.294 389777.015 389777.509 389772.282 389772.196 389772.196 389772.496 389762.416 389761.724 389762.193 389767.679 389768.193 389768.605 389768.93 389769.271 389769.271 389769.271 389769.747 389769.747 389768.682 389769.747 389768.682 389769.747 389768.682 389769.7552 389767.552 389767.956	389733.350 4483995.736 389742.055 4484004.352 389740.103 4483998.534 389736.362 4483998.272 389731.195 4483998.272 389732.590 4484002.209 389737.839 4484006.656 389746.840 4484011.826 389757.351 4484016.435 389755.480 4484016.435 389759.656 4484022.783 389759.656 4484022.783 389769.427 4484022.729 389769.294 4484013.435 389777.015 4484013.435 389777.509 4484013.937 389772.282 4484015.852 389772.196 4484015.852 389771.455 4484015.852 389761.745 4483993.843 389762.416 4483993.843 389763.605 4483993.843 389768.605 4483993.843 389768.605 4483993.581 389768.864 4483993.581 389769.771 4483993.166 389769.774 4483994.106

NUM	Х	Υ	Z
2256	389769.883	4483992.913	779.470
2257	389768.799	4483993.371	779.524
2258	389768.318	4483992.265	779.565
2259	389766.984	4483992.853	779.697
2260	389767.489	4483993.923	779.667
2260	389766.390		
	389766.956	4483994.382	779.704
2262	000700.000	4483995.687	779.643
2263	389770.484	4483994.194	779.555
2264	389768.352	4483985.605	781.202
2265	389764.747	4483987.318	781.225
2266	389757.704	4483974.834	780.960
2267	389761.370	4483973.226	780.967
2268	389762.632	4483972.238	779.817
2269	389756.023	4483975.166	779.811
2270	389763.712	4483992.625	779.852
2271	389770.351	4483989.689	779.854
2272	389771.406	4483990.536	779.404
2273	389771.345	4483990.434	779.380
2274	389763.472	4483993.852	779.690
2275	389763.485	4483993.907	779.693
2276	389763.007	4483994.123	779.682
2277	389762.819	4483993.710	779.711
2278	389763.063	4483993.599	779.701
2279	389761.182	4483989.346	779.654
2280	389760.946	4483989.451	779.626
2281	389760.761	4483989.019	779.637
2282	389760.995	4483988.910	779.699
2283	389759.080	4483984.565	779.637
2284	389758.831	4483984.657	779.654
2285	389758.555	4483984.030	779.608
2286	389758.782	4483983.926	779.661
2287	389756.930	4483979.700	779.601
2288	389756.676	4483979.803	779.604
2289	389756.488	4483979.377	779.598
2290	389756.727	4483979.282	779.620
2291	389754.836	4483974.995	779.630
2292	389754.587	4483975.079	779.608
2293	389754.394	4483974.632	779.549
2294	389754.960	4483974.376	779.536
2295	389755.018	4483974.487	779.532
2296	389762.805	4483971.101	779.377
L			

NUM	Х	Υ	Z
2297	389762.761	4483970.987	779.350
2298	389763.379	4483970.731	779.218
2299	389763.561	4483971.161	779.196
2300	389763.321	4483971.274	779.219
2301	389764.460	4483973.898	779.181
2302	389765.291	4483973.568	779.152
2303	389765.568	4483974.216	779.141
2304	389764.785	4483974.573	779.189
2305	389765.235	4483975.616	779.280
2306	389765.479	4483975.512	779.263
2307	389765.666	4483975.944	779.255
2308	389765.420	4483976.051	779.309
2309	389767.288	4483980.259	779.127
2310	389767.534	4483980.166	779.120
2311	389767.809	4483980.784	779.112
2312	389767.563	4483980.913	779.131
2313	389769.449	4483985.193	779.183
2314	389769.706	4483985.083	779.177
2315	389769.889	4483985.492	779.116
2316	389770.453	4483985.267	779.129
2317	389771.143	4483986.820	779.167
2318	389770.349	4483987.206	779.137
2319	389771.548	4483989.932	779.207
2320	389771.811	4483989.834	779.228
2321	389772.009	4483990.280	779.289
2322	389769.558	4483984.416	779.145
2323	389768.842	4483980.320	779.128
2324	389768.504	4483979.550	779.074
2325	389761.559	4483970.064	778.861
2326	389760.890	4483970.094	779.623
2327	389762.098	4483969.578	779.644
2328	389762.508	4483970.518	779.644
2329	389761.318	4483971.031	779.656
2330	389759.237	4483970.782	779.639
2331	389760.790	4483970.132	779.651
2332	389761.204	4483971.117	779.633
2333	389759.675	4483971.773	779.653
2334	389759.542	4483971.804	779.639
2335	389759.148	4483970.866	779.650
2336	389758.545	4483971.112	779.666
2337	389758.939	4483972.059	779.666

NUM	х	Υ	Z
2338	389758.299	4483971.018	779.472
2339	389758.869	4483972.284	779.390
2340	389762.718	4483970.612	779.332
2341	389762.177	4483969.361	779.285
2342	389760.053	4483969.626	779.415
2343	389759.331	4483970.169	779.440
2344	389756.942	4483971.047	779.532
2345	389756.475	4483972.412	779.722
2346	389755.254	4483973.996	779.288
2347	389754.580	4483972.153	779.551
2348	389752.420	4483973.025	779.497
2349	389753.145	4483974.835	779.457
2349	389752.916	4483975.214	779.573
	389752.863		
2351		4483974.892	779.198
2352	389755.845	4483973.632	779.172
2353	389756.051	4483973.686	779.396
2354	389755.068	4483971.964	779.512
2355	389754.792	4483972.264	779.166
2356	389752.068	4483973.231	779.539
2357	389752.308	4483973.334	779.164
2358	389752.851	4483974.894	779.184
2359	389752.749	4483975.162	779.576
2360	389754.936	4483975.832	779.473
2361	389754.218	4483975.185	779.673
2362	389756.647	4483980.639	779.706
2363	389757.106	4483984.217	779.558
2364	389762.415	4483993.958	779.774
2365	389756.440	4483996.460	779.808
2366	389727.545	4483989.540	780.570
2367	389743.808	4483990.516	780.525
2368	389743.920	4483988.158	780.514
2369	389727.665	4483987.211	780.516
2370	389724.692	4483976.944	780.508
2371	389738.107	4483977.732	780.473
2372	389738.245	4483975.406	780.456
2373	389724.842	4483974.607	780.476
2374	389720.751	4483961.926	780.511
2375	389720.611	4483964.246	780.491
2376	389732.426	4483964.951	780.438
2377	389732.590	4483962.655	780.419
2378	389745.129	4483958.594	778.960

NUM	Х	Υ	Z
2379	389746.172	4483960.253	778.962
2380	389741.110	4483962.714	779.210
2381	389740.119	4483960.858	779.329
2382	389747.880	4483969.412	779.540
2383	389747.121	4483965.762	779.312
2384	389747.251	4483967.154	779.302
2385	389748.319	4483967.065	779.209
2386	389748.438	4483964.416	779.142
2387	389745.622	4483965.632	779.176
2388	389746.821	4483968.392	779.159
2389	389749.627	4483967.169	779.108
2390	389753.327	4483965.557	778.820
2391	389753.732	4483966.509	779.054
2392	389752.782	4483966.914	779.208
2393	389752.378	4483965.957	778.901
2394	389754.930	4483965.129	778.875
2395	389754.188	4483965.425	778.793
2396	389754.495	4483966.132	779.056
2397	389755.209	4483965.835	779.156
2398	389753.047	4483966.240	779.414
2399	389754.675	4483965.641	779.346
2400	389756.151	4483966.332	779.298
2401	389757.269	4483965.818	779.322
2402	389756.879	4483964.960	779.294
2403	389757.426	4483964.680	779.283
2404	389757.227	4483964.274	779.265
2405	389756.683	4483964.467	779.283
2406	389756.493	4483964.070	779.294
2407	389755.342	4483964.593	779.289
2408	389755.944	4483966.588	779.169
2409	389754.991	4483964.478	778.773
2410	389756.608	4483963.712	778.875
2411	389756.802	4483964.114	778.992
2412	389757.372	4483963.868	779.030
2413	389757.752	4483964.699	779.206
2414	389757.204	4483964.946	779.183
2415	389757.595	4483965.879	779.217
2416	389764.837	4483969.398	779.146
2417	389771.442	4483983.788	779.111
2418	389774.258	4483979.801	779.023
2419	389774.043	4483979.376	779.036

NUM	Х	Υ	Z
2420	389773.868	4483978.960	779.019
2421	389773.344	4483977.866	779.112
2422	389773.510	4483978.257	779.119
2423	389773.928	4483978.069	779.141
2424	389773.741	4483977.683	779.097
2425	389791.026	4484019.582	777.525
2426	389789.480	4484019.757	777.612
2427	389776.547	4484001.533	779.200
2428	389776.338	4483995.766	779.191
2429	389766.448	4483999.847	779.691
2430	389758.271	4483999.491	779.892
2431	389757.580	4483997.978	779.875
2431	389756.888	4483998.291	779.873
2432	389757.581	4483999.815	779.859
2433	389758.329	4484000.723	779.945
2434	389757.995	4483999.989	779.945
2433	389757.281	4484000.320	779.919
2437	389757.606 389756.264	4484001.044	779.930 779.929
		4484001.080	
2439	389757.048	4484000.728	779.931
2440	389756.711	4483999.938	779.912
2441	389755.907	4484000.292	779.909
2442	389755.086	4483999.997	779.866
2443	389756.913	4483999.178	779.849
2444	389758.337	4484003.699	779.980
2445	389759.050	4484009.633	782.266
2446	389765.117	4484008.598	781.510
2447	389765.045	4484009.293	781.504
2448	389766.274	4484008.774	781.496
2449	389765.886	4484007.795	781.513
2450	389768.072	4484007.734	781.190
2451	389767.277	4484008.089	781.263
2452	389768.910	4484006.660	781.340
2453	389773.264	4484003.539	781.060
2454	389771.036	4484005.865	781.126
2455	389771.722	4484005.579	781.111
2456	389769.732	4484003.257	781.980
2457	389768.862	4484003.648	781.962
2458	389769.249	4484004.514	781.969
2459	389770.110	4484004.123	781.959
2460	389762.472	4484008.446	781.647

NUM	х	Υ	Z
2461	389760.237	4484008.477	781.580
2462	389760.292	4484008.547	781.804
2463	389761.389	4484007.860	781.939
2464	389763.251	4484007.064	781.914
2465	389763.044	4484006.535	781.928
2466	389763.755	4484006.241	781.925
2467	389763.956	4484006.757	781.910
2468	389769.074	4484004.558	781.915
2469	389768.638	4484003.556	781.945
2470	389770.462	4484002.766	781.953
2471	389771.455	4484005.009	781.951
2472	389764.499	4484008.009	781.928
2473	389765.094	4484009.515	781.964
2474	389764.407	4484009.779	781.955
2475	389763.813	4484008.306	781.933
2476	389760.273	4484009.816	781.926
2477	389759.695	4484008.599	782.259
2478	389760.249	4484009.846	782.257
2479	389758.371	4484010.639	782.239
2480	389757.846	4484009.393	782.242
2481	389759.689	4484008.595	782.260
2482	389759.508	4484008.633	781.854
2483	389759.194	4484007.883	781.855
2484	389761.065	4484007.082	781.910
2485	389761.383	4484007.865	781.925
2486	389761.460	4484003.253	779.716
2487	389764.647	4484001.881	779.688
2488	389764.619	4484001.746	780.044
2489	389765.843	4484004.620	781.678
2490	389762.672	4484006.029	781.704
2491	389761.397	4484003.176	780.121
2492	389762.480	4484006.441	781.657
2493	389761.627	4484006.835	781.673
2494	389760.202	4484003.664	779.830
2495	389761.101	4484003.274	779.641
2496	389761.089	4484007.056	781.679
2497	389762.883	4484006.229	781.662
2498	389763.004	4484006.531	781.658
2499	389761.053	4484007.039	781.298
2500	389761.088	4484007.067	781.722
2501	389761.419	4484007.823	781.746

NUM	х	Υ	Z
2502	389763.232	4484007.041	781.739
2503	389763.025	4484006.532	781.700
2504	389763.046	4484006.507	781.634
2505	389763.783	4484006.210	781.547
2506	389763.990	4484006.722	781.420
2507	389768.004	4484004.974	781.251
2508	389768.023	4484004.974	781.359
2509	389769.052	4484004.535	781.347
2510	389768.620	4484003.562	781.354
2511	389768.615	4484003.531	781.157
2512	389770.465	4484002.742	781.155
2513	389771.723	4484005.570	781.105
2514	389771.043	4484005.874	781.110
2515	389770.780	4484005.343	781.182
2516	389765.808	4484007.486	781.367
2517	389766.336	4484008.790	781.318
2518	389765.066	4484009.335	781.377
2519	389765.121	4484009.539	781.409
2520	389764.386	4484009.816	781.492
2521	389763.797	4484008.357	781.681
2522	389760.271	4484009.862	781.709
2523	389758.372	4484010.661	782.024
2524	389757.815	4484009.386	781.646
2525	389759.502	4484008.636	781.526
2526	389759.198	4484007.877	781.452
2527	389761.575	4484006.809	781.196
2528	389711.448	4483956.404	783.099
2529	389714.350	4483954.681	782.762
2530	389711.850	4483951.878	783.004
2531	389713.373	4483951.753	782.819
2532	389716.876	4483950.642	782.318
2533	389717.600	4483954.108	782.295
2534	389720.790	4483954.471	781.750
2535	389721.143	4483951.526	781.664
2536	389727.412	4483952.871	780.573
2537	389727.134	4483956.179	780.764
2538	389729.993	4483957.478	780.315
2539	389731.756	4483954.791	780.159
2540	389733.748	4483956.915	780.054
2541	389731.449	4483958.873	780.290
2542	389732.558	4483960.137	780.297
_~ · _			,

NUM	Х	Υ	Z
2543	389735.227	4483958.953	780.121
2544	389735.778	4483962.526	780.057
2545	389732.998	4483963.611	780.364
2546	389732.903	4483966.494	780.383
2547	389736.835	4483968.694	780.135
2548	389735.660	4483957.936	779.968
2549	389736.277	4483957.820	779.847
2550	389739.512	4483965.800	779.522
2551	389736.863	4483968.762	780.134
2552	389741.199	4483969.967	779.611
2553	389738.232	4483972.346	780.245
2554	389744.286	4483979.232	779.766
2555	389741.966	4483980.630	780.232
2556	389744.508	4483987.304	780.424
2557	389747.616	4483986.781	779.804
2558	389748.005	4483991.661	780.008
2559	389746.960	4483992.277	780.207
2560	389780,490	4484014.805	778.453
2561	389781.013	4484018.045	778.346
2562	389777.225	4484018.205	778.488
2563	389776.797	4484015.174	778.621
2564	389771.427	4484015.887	779.457
2565	389771.481	4484018.854	779.230
2566	389766.374	4484020.041	780.673
2567	389765.748	4484017.072	780.838
2568	389762.643	4484017.653	781.369
2569	389762.542	4484020.690	781.449
2570	389756.729	4484020.024	782.125
2571	389756.821	4484017.122	782.122
2572	389751.865	4484015.972	782.261
2573	389751.053	4484017.923	782.399
2574	389742.020	4484014.109	783.337
2575	389742.630	4484012.035	783.017
2576	389737.258	4484009.437	783.436
2577	389736.079	4484011.149	783.781
2578	389730.974	4484008.042	783.932
2579	389732.124	4484005.973	783.773
2580	389726.990	4484001.947	783.743
2581	389725.490	4484003.490	783.875
2582	389721.074	4483999.170	784.133
2583	389722.184	4483997.503	783.908

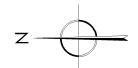
NUM	х	Υ	Z
	389718.292	4483993.024	783.991
2584 2585	389716.292	4483993.024	784.226
2586	389713.607	4483990.047	784.122
2587	389715.504	4483988.733	783.892
2588	389712.788	4483982.946	783.597
2589	389710.771	4483983.796	783.876
2590	389708.909	4483976.750	784.050
2591	389711.158	4483976.214	783.631
2592	389707.839	4483969.658	783.829
2593	389710.319	4483969.214	783.539
2594	389710.205	4483962.440	783.404
2595	389707.770	4483962.378	783.650
2596	389708.511	4483956.508	783.481
2597	389711.795	4483951.805	782.992
2598	389709.040	4483951.162	783.271
2599	389709.640	4483946.572	783.133
2600	389712.832	4483946.704	782.811
2601	389714.528	4483941.198	782.573
2602	389711.232	4483940.286	782.750
2603	389712.916	4483937.163	782.336
2604	389714.544	4483936.109	782.046
2605	389715.854	4483939.095	782.101
2606	389718.058	4483937.379	781.606
2607	389717.332	4483935.118	781.685
2608	389721.264	4483934.195	781.075
2609	389721.812	4483936.928	781.169
2610	389726.653	4483937.298	780.532
2611	389726.482	4483934.739	780.428
2612	389734.642	4483935.776	779.404
2613	389734.869	4483938.418	779.464
2614	389744.117	4483939.275	777.998
2615	389744.258	4483936.762	777.949
2616	389750.039	4483935.958	776.998
2617	389751.104	4483938.507	776.966
2618	389757.451	4483936.818	776.209
2619	389757.315	4483934.193	776.128
2620	389761.683	4483933.514	775.817
2621	389762.197	4483935.809	775.813
2622	389767.004	4483936.078	775.575
2623	389767.567	4483933.643	775.555
2624	389770.855	4483933.043	775.440
2024	303//0.033	4403334./3/	773.440

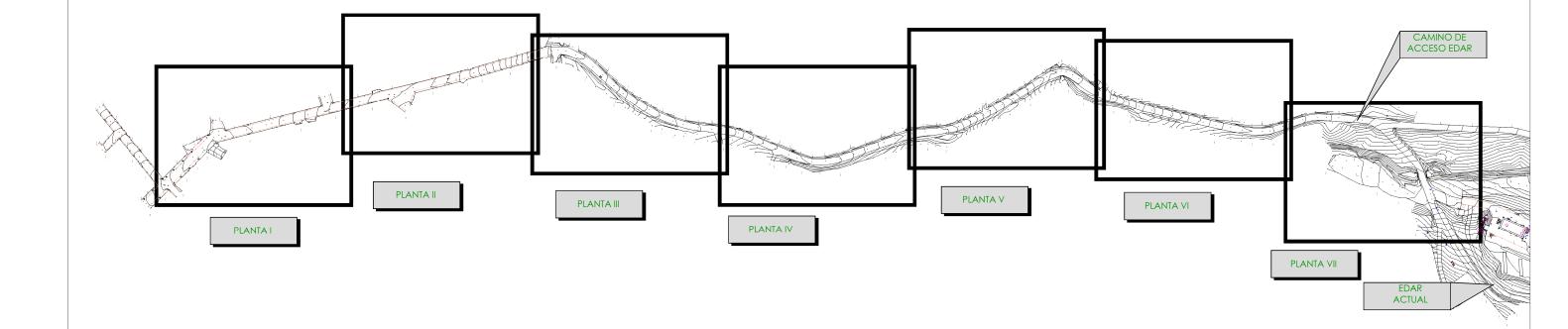
NUM	Х	Υ	Z
2625	389769.921	4483937.551	775.543
2626	389772.811	4483939.882	775.476
2627	389774.790	4483938.390	775.389
2628	389776.504	4483941.157	775.470
2629	389774.498	4483942.870	775.541
2630	389775.415	4483945.125	775.656
2631	389777.675	4483944.746	775.519
2632	389778.221	4483948.849	775.782
2633	389775.689	4483949.130	775.954
2634	389775.009	4483955.767	776.612
2635	389777.818	4483956.414	776.389
2636	389777.265	4483963.888	777.293
2637	389774.130	4483964.090	777.894
2638	389774.199	4483971.353	778.460
2639	389776.930	4483971.670	778.071
2640	389777.332	4483976.058	778.619
2641	389774.413	4483976.389	779.009
2642	389774.593	4483981.186	779.109
2643	389777.192	4483980.632	778.871
2644	389777.511	4483987.097	779.152
2645	389766.388	4484004.631	781.264
2646	389768.723	4484002.664	781.071
2647	389770.807	4484002.315	781.064
2648	389772.567	4484002.713	780.967
2649	389773.715	4484003.061	780.789
2650	389773.255	4484004.654	780.905
2651	389771.511	4484006.557	781.013
2652	389768.537	4484008.122	781.119
2653	389766.000	4484009.698	781.281
2654	389763.885	4484012.602	781.322
2655	389763.899	4484016.768	781.256
2656	389765.779	4484020.702	780.870
2657	389767.232	4484023.338	780.518
2658	389767.069	4484011.030	780.800
2659	389768.295	4484010.919	780.409
2660	389771.091	4484010.353	779.628
2661	389773.996	4484009.805	779.054
2662	389772.869	4484022.524	778.664
2663	389772.920	4484021.579	778.627
2664	389774.315	4484015.275	778.930
2665	389774.417	4484009.735	778.976

NUM	Х	Υ	Z
2666	389775.806	4484007.958	778.868
2667	389776.667	4484005.521	778.894
2668	389776.670	4484003.321	779.007
2669	389775.141	4484000.896	779.182
2670	389772.393	4483999.624	779.454
2671	389769.466	4484000.001	779.666
2672	389765.051	4484001.738	779.817
2673	389759.977	4484003.605	779.893
2674	389754.489	4484004.915	779.900
2675	389750.125	4484005.682	780.291
2676	389745.266	4484001.565	780.481
2677	389739.294	4483996.982	780.832
2678	389737.098	4483993.577	780.761
2679	389727.869	4483996.023	782.714
2680	389729.060	4483995.981	782.487
2681	389732.923	4483994.333	781.534
2682	389735.332	4483992.814	780.909
2683	389735.324	4483992.384	780.770
2684	389733.037	4483992.082	780.669
2685	389729.105	4483992.093	780.661
2686	389728.184	4483992.017	780.727
2687	389727.009	4483991.568	780.707
2688	389761.184	4484006.603	781.173
2689	389759.400	4484006.756	781.293
2690	389756.665	4484007.878	781.522
2691	389756.280	4484008.047	781.549
2692	389752.495	4484009.338	781.867
2693	389748.464	4484009.517	782.166
2694	389742.641	4484007.353	782.579
2695	389737.856	4484007.675	782.919
2696	389732.924	4484003.477	783.090
2697	389728.904	4483996.815	782.660
2698	389725.864	4483995.598	782.786
2699	389724.023	4483995.001	783.113
2700	389722.370	4483992.741	783.176
2701	389721.855	4483990.006	782.931
2702	389721.797	4483985.388	782.394
2703	389725.428	4483985.667	780.671
2704	389721.549	4483979.007	781.707
2705	389723.460	4483977.798	780.703
2706	389719.925	4483973.454	781.603

NUM	Х	Υ	Z
2707	389721.808	4483972.867	780.527
2708	389718.908	4483965.549	780.657
2709	389716.707	4483966.530	782.044
2710	389716.204	4483963.300	782.086
2711	389718.466	4483960.246	781.768
2712	389719.162	4483962.289	780.695
2713	389719.862	4483961.251	780.631
2714	389720.924	4483960.842	780.556
2715	389720.188	4483959.613	781.457
2716	389722.771	4483959.149	781.063
2717	389723.094	4483960.530	780.509
2718	389729.546	4483960.105	780.310
2719	389729.718	4483959.479	780.326
2720	389750.076	4483967.095	779.159
2721	389750.146	4483967.269	779.228
2722	389752.581	4483967.023	779.181
2723	389757.909	4483963.797	779.105
2724	389756.298	4483963.266	778.818
2725	389757.595	4483959.300	778.594
2726	389759.248	4483953.489	777.607
2727	389765.507	4483952.253	777.030
2728	389769.459	4483952.725	776.920
2729	389773.152	4483954.519	776.849
2730	389765.085	4483961.709	778.981
2731	389765.877	4483961.651	778.910
2732	389766.185	4483961.921	778.929
2733	389769.101	4483965.645	778.963
2734	389782.164	4483959.461	775.997
2735	389783.927	4483965.012	776.039
2736	389771.181	4483968.696	778.837
2737	389777.214	4483977.766	778.694
2738	389787.950	4483977.454	776.123
2739	389779.465	4483988.388	779.108
2740	389783.096	4483997.164	778.790
2741	389790.214	4483996.079	776.881
2742	389788.228	4484005.304	777.458
2743	389785.594	4484005.925	778.459
2744	389787.154	4484015.172	778.189
2745	389789.155	4484015.118	777.452
2746	389789.413	4484022.852	777.772
2747	389787.926	4484022.920	778.046

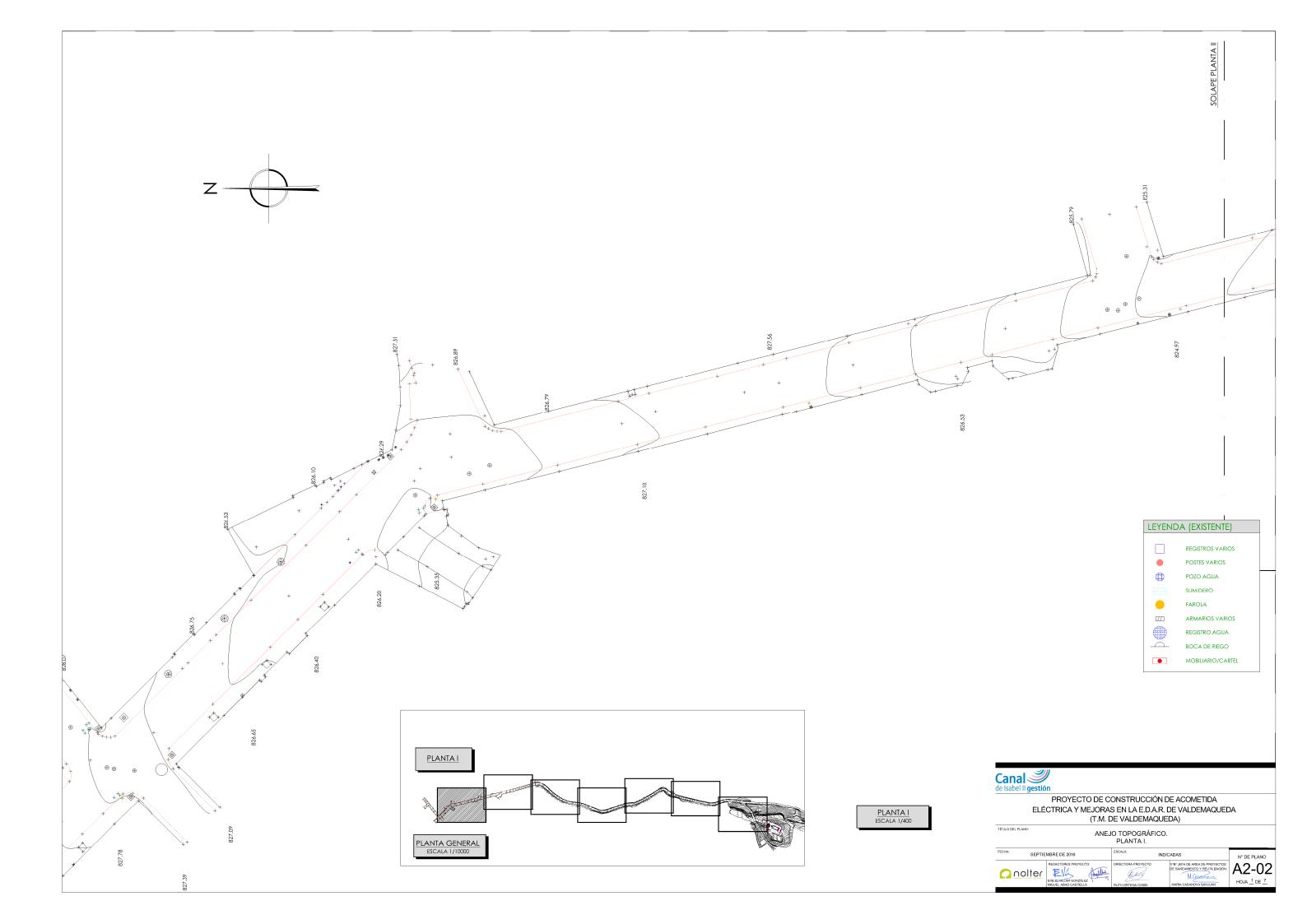
NUM	Х	Υ	Z
2748	389787.112	4484022.826	778.098
2749	389786.946	4484021.884	778.137
2750	389785.426	4484012.922	778.407
2751	389784.101	4484005.013	778.727
2752	389783.845	4484003.563	778.763
2753	389783.485	4484002.227	778.819
2754	389783.052	4484000.976	778.857
2755	389782.442	4483999.583	778.914
2756	389781.605	4483997.746	778.969
2757	389779.533	4483993.137	779.110
2758	389775.874	4483984.913	779.139
2759	389770.651		779.068
2759	389765.894	4483973.017 4483962.395	779.068
2761	389762.598	4483963.852	779.114
2762	389754.124	4483967.529	779.332
2763	389746.381	4483970.919	779.521
2764	389745.830	4483971.141	779.482
2765	389747.703	4483975.339	779.603
2766	389750.376	4483981.352	779.708
2767	389754.923	4483991.554	779.738
2768	389757.495	4483997.370	779.755
2769	389758.401	4483999.621	779.897
2770	389757.367	4484000.113	779.865
2771	389756.915	4483999.181	779.838
2772	389756.901	4483999.159	779.673
2773	389756.323	4483997.915	779.788
2774	389757.518	4483997.375	779.747
2775	389758.513	4483999.564	779.860
2776	389759.200	4484001.113	779.834
2777	389756.090	4484002.506	779.813
2778	389754.967	4484000.042	779.759
2779	389764.875	4484001.627	779.759
2780	389767.961	4484000.251	779.668
2781	389769.449	4483999.590	779.593
2782	389769.925	4483999.367	779.575
2783	389770.718	4483999.132	779.531
2784	389771.798	4483999.006	779.465
2785	389772.768	4483999.052	779.410
2786	389773.774	4483999.281	779.360
2787	389774.846	4483999.613	779.274
2788	389775.737	4484000.082	779.208

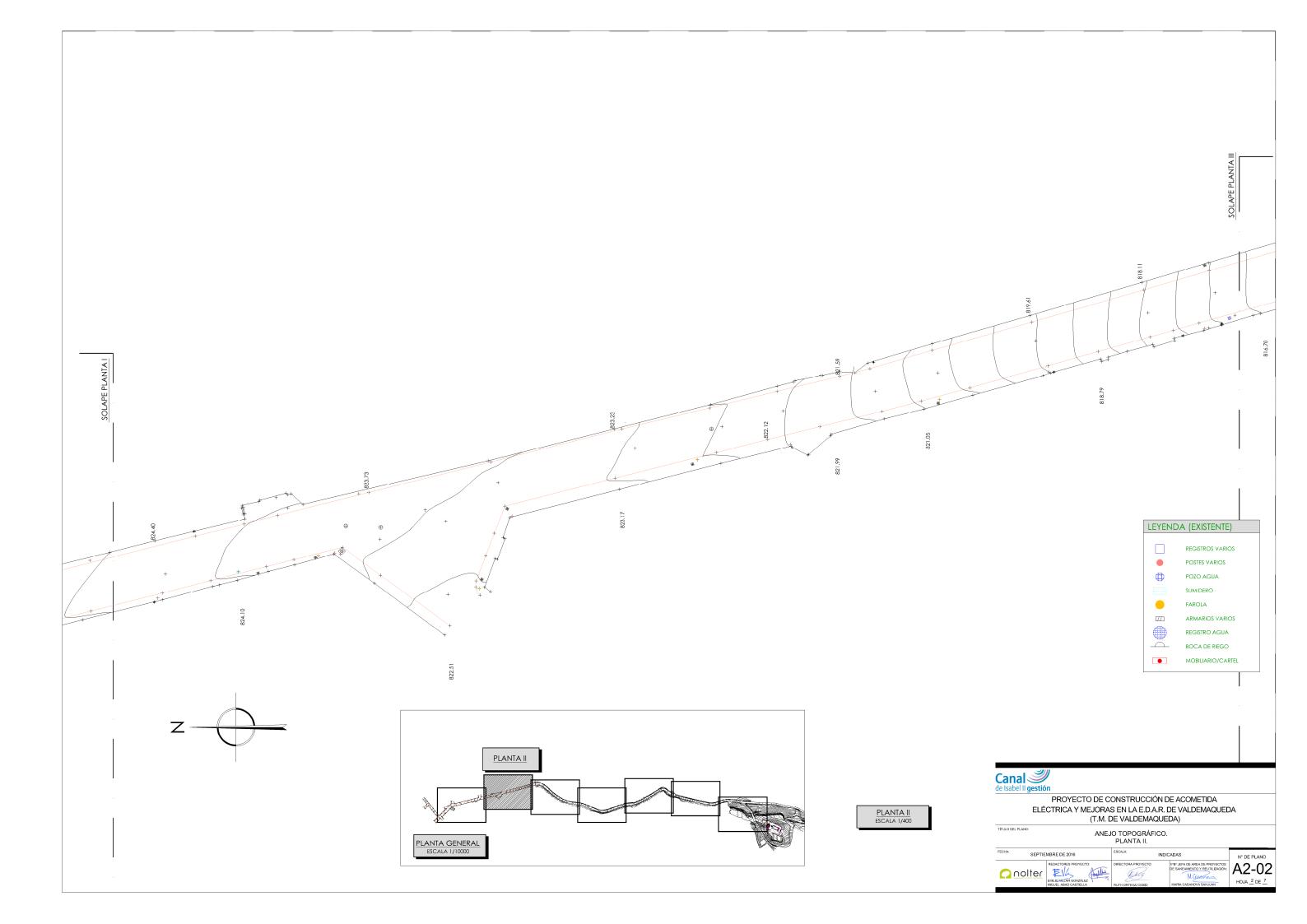


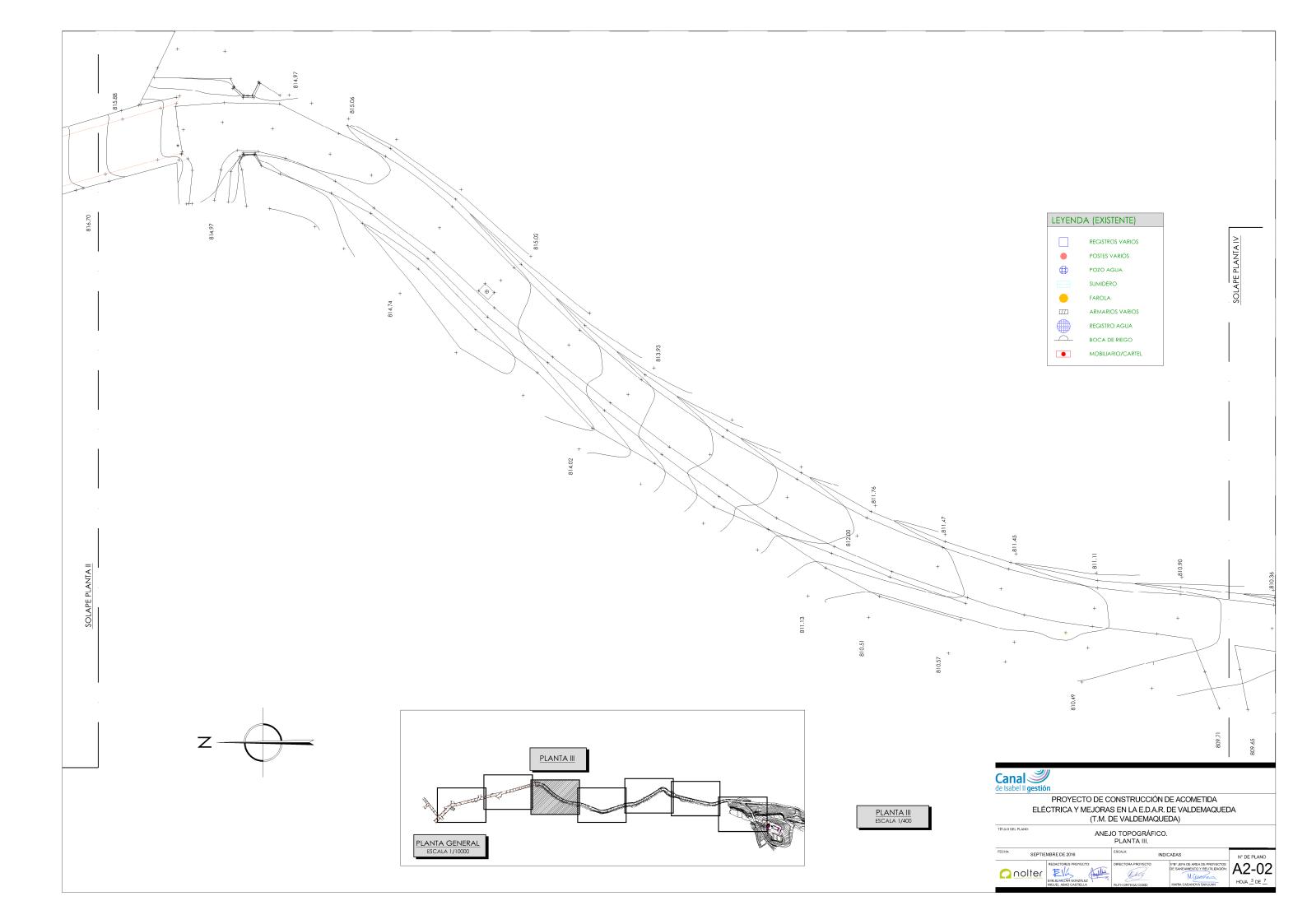

NUM	х	Υ	Z
2789	389776.492	4484000.613	779.148
2790	389776.998	4484000.013	779.148
2790		4484001.071	779.047
	389777.624		
2792	389777.931	4484002.121	779.011
2793	389778.250	4484002.608	770.505
2794	389778.476	4484003.093	778.942
2795	389778.669	4484003.570	778.940
2796	389778.850	4484004.064	778.895
2797	389779.071	4484005.084	778.835
2798	389779.735	4484009.053	778.650
2799	389781.074	4484017.090	778.354
2800	389782.111	4484023.075	778.147
2801	389777.748	4484024.061	778.389
2802	389781.768	4484021.823	778.177
2803	389777.570	4484022.785	778.514
2804	389781.548	4484020.561	778.244
2805	389773.063	4484021.922	778.563
2806	389773.655	4484026.190	778.678
2807	389777.964	4484025.611	778.477
2808	389777.718	4484023.846	778.510
2809	389777.609	4484023.062	778.486
2810	389777.364	4484021.307	778.444
2811	389771.829	4484023.003	779.027
2812	389770.451	4484023.112	779.543
2813	389767.320	4484023.465	780.567
2814	389767.300	4484031.437	781.022
2815	389759.434	4484028.545	782.380
2816	389749.714	4484023.105	782.804
2817	389738.307	4484015.683	783.812
2818	389734.644	4484013.385	784.064
2819	389724.641	4484006.768	784.404
2820	389719.824	4484003.053	784.704
2821	389714.969	4483999.108	784.718
2822	389710.743	4483994.485	784.754
2823	389708.709	4483988.597	784.414
2824	389706.208	4483981.098	784.474
2825	389703.308	4483969.182	784.238
2826	389700.618	4483957.364	784.299
2827	389700.927	4483953.969	784.225
2828	389702.283	4483943.651	783.813
2829	389705.051	4483937.872	783.315

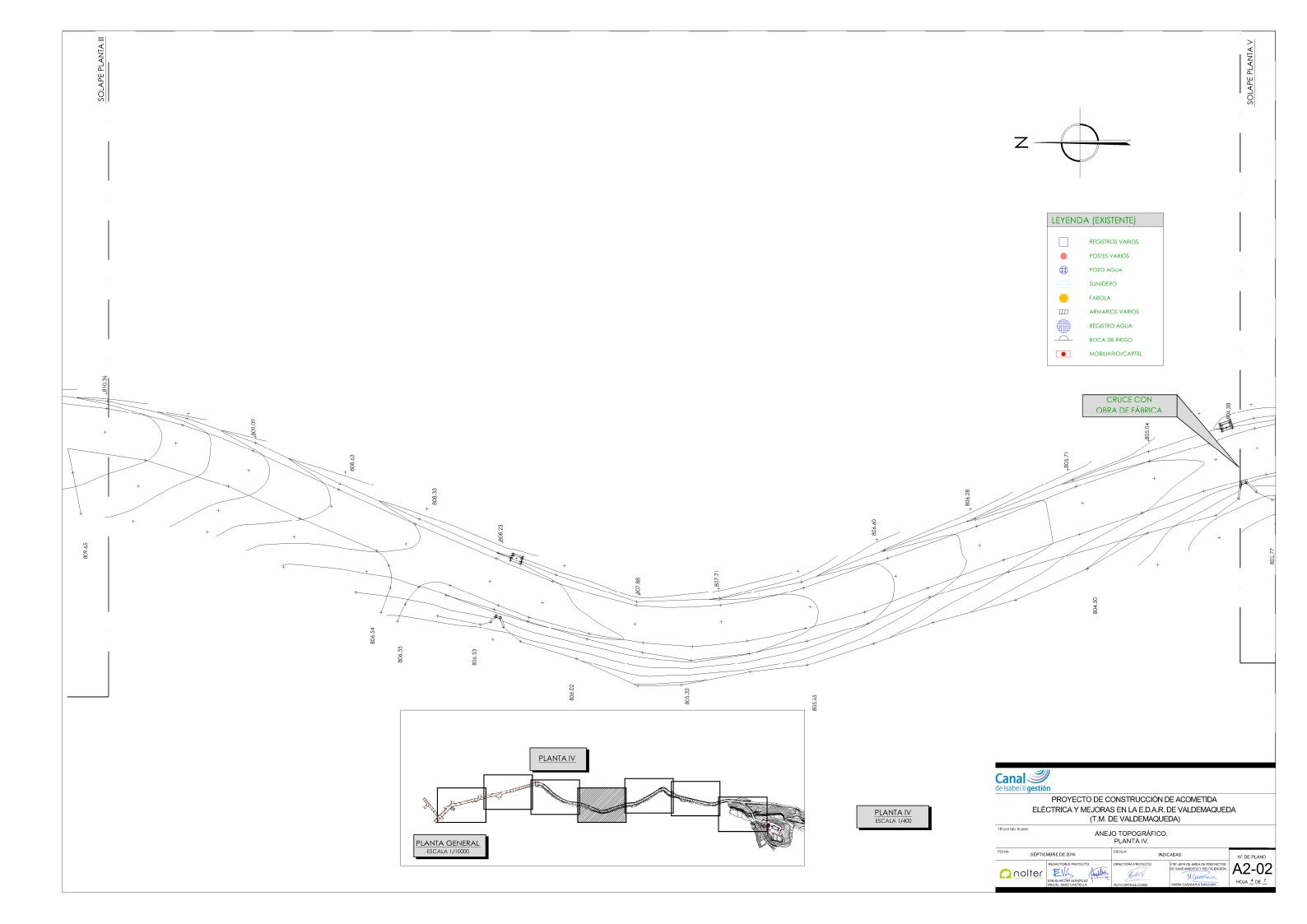
NUM	Х	Υ	Z
2830	389708.528	4483934.343	782.885
2831	389719.687	4483931.368	781.308
2832	389731.406	4483928.389	779.760
2833	389738.931	4483927.610	778.719
2834	389747.386	4483926.877	777.323
2835	389754.605	4483926.176	776.366
2836	389761.321	4483925.262	775.547
2837	389766.319	4483924.385	775.281
2838	389777.856	4483930.614	775.106
2839	389781.304	4483940.472	775.242
2840	389785.153	4483951.527	775.481
2841	389787.141	4483957.256	775.641
2842	389792.409	4483971.928	775.058
2843	389794.120	4483976.638	775.220
2844	389795.848	4483996.707	776.241
2845	389794.556	4484008.226	776.734
2846	389793.836	4484014.214	777.067
2847	389792.788	4484022.614	777.522
2848	389788.804	4484023.089	777.918
2849	389786.967	4484023.292	778.197
2850	389786.732	4484023.353	778.196
2851	389782.899	4484023.856	778.202
2852	389782.703	4484023.868	778.170
2853	389777.836	4484024.695	778.588

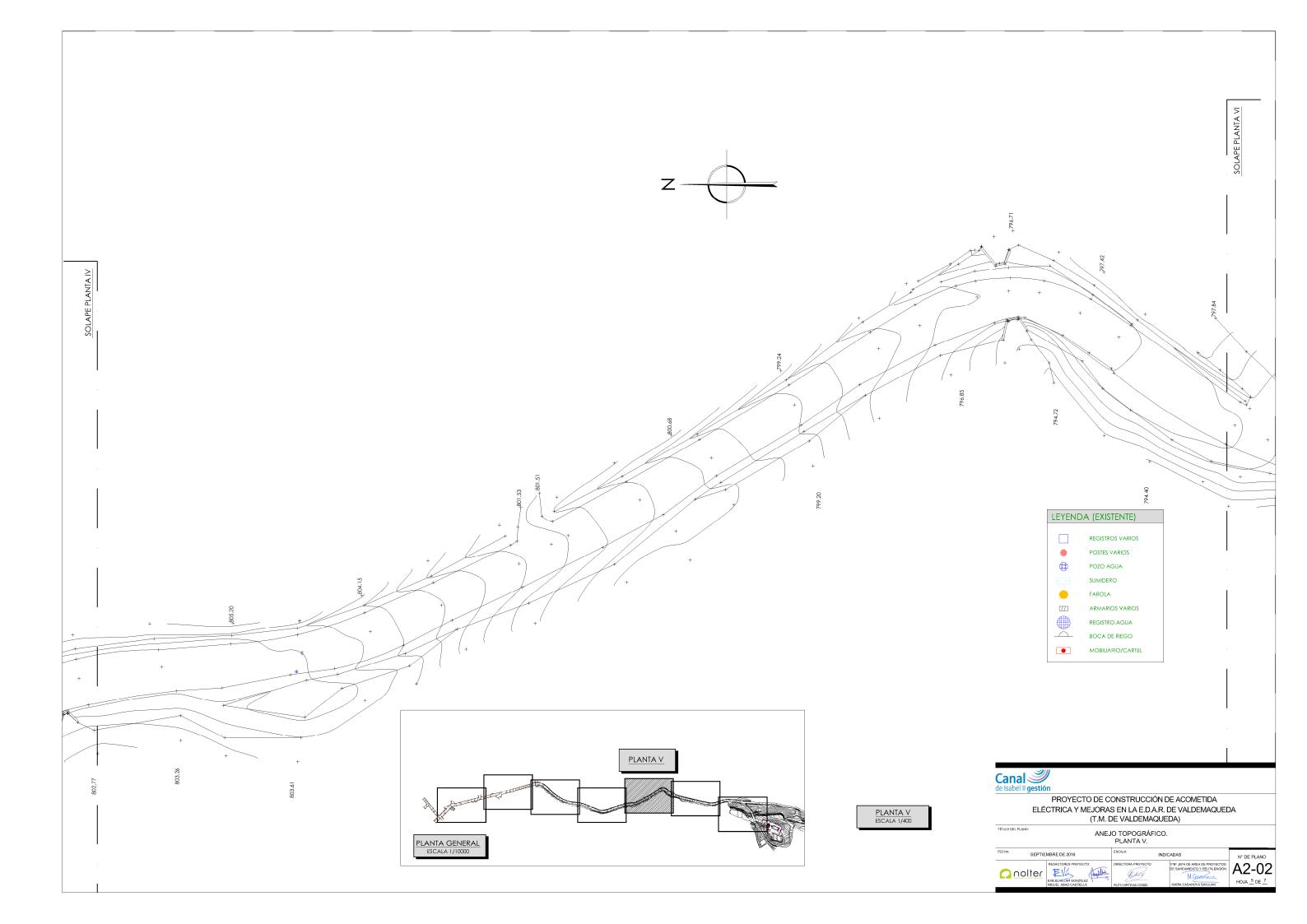
ANEXO Nº 2.- PLANOS DEL LEVANTAMIENTO TOPOGRÁFICO

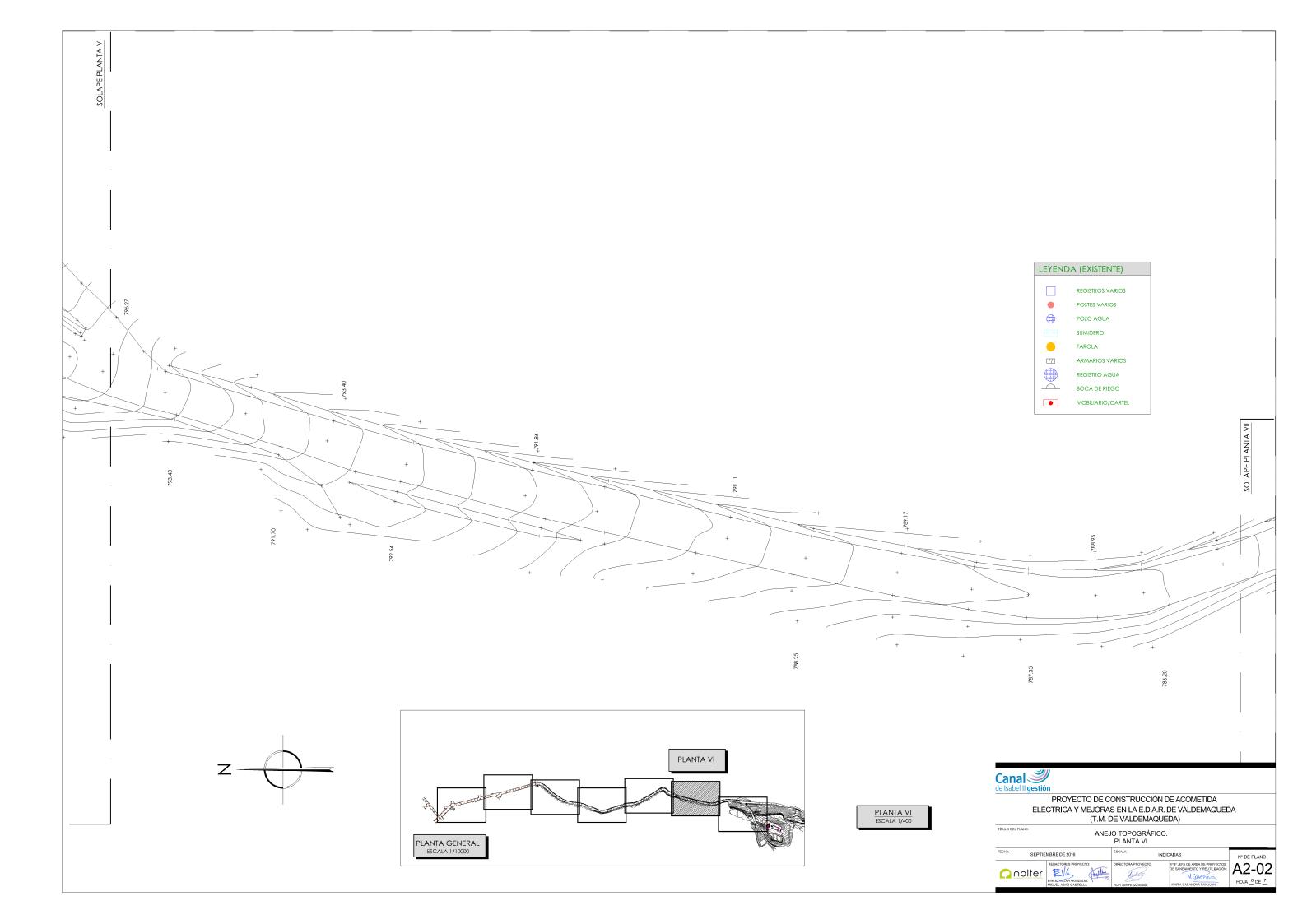

ANEJO TOPOGRÁFICO. PLANTA GENERAL DE LAS OBRAS.

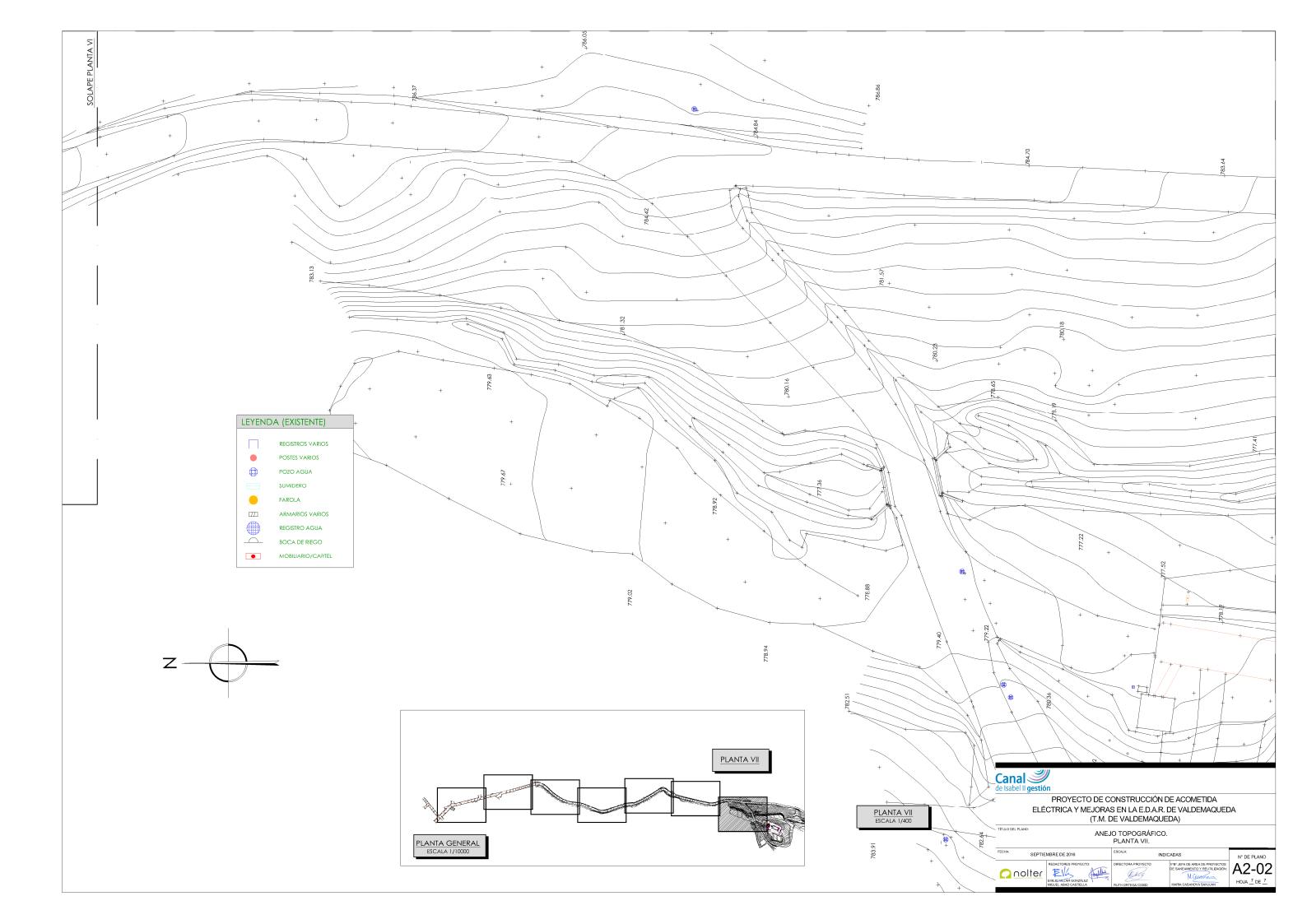












APÉNDICE Nº 1.- REPORTAJE FOTOGRÁFICO

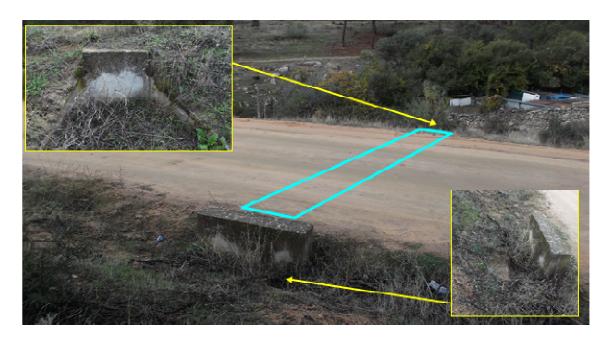
 Punto de enganche subterráneo del suministro eléctrico en el cruce de las calles Acacias y Avenida Puente Romano

2.- Primer tramo del trazado de la línea subterránea bajo acera de la Avenida Puente Romano

3.- Continuación del trazado de línea de Media Tensión por calzada de Avenida Puente Romano desde su cruce con Calle Pradera Redonda

4.- Cruce con la Travesía Puente Romano

5.- Último tramo urbano del trazado subterráneo de Media Tensión por Avenida Puente Romano, antes de llegar al camino de tierra.



6.- Zona donde concluye el trazado urbano y comienza el camino de tierras, en su tramo inicial antes de conectar con el Camino de Valdemaqueda a Villaescusa, donde se aprecia el *primer cruce de drenaje transversal* al camino. Vistas del estado de esta obra de drenaje.

7.- Detalle de tapas de registros de conducción de agua que discurre por el camino.

8.- Segundo cruce de drenaje, con detalle de sus bocas prácticamente colmatadas

9.- Camino por donde discurre el trazado subterráneo de Media Tensión.

10.- Tercer cruce de drenaje con detalle de sus bocas

11.- Cuarto cruce bajo camino de drenaje transversal, más próximo a la planta depuradora

12.- Último tramo del camino en su llegada a la E.D.A.R.

13.- Marco de hormigón de paso sobre el Arroyo Rodajos en la entrada a la E.D.A.R.

14.- Entrada a la planta depuradora desde el camino de acceso

15.- Vista general de la depuradora desde la entrada a la misma

16.- Vista general de la planta desde el punto de vertido

17.- Zona este de la parcela

18.- Zona oeste, placas solares a desmantelar y zona de implantación del nuevo edificio

19.- Bancos de baterías para almacenamiento de la energía solar. Ubicación bajo tratamiento biológico.

20.- Cuadro de estabilización y filtrado CC-CC (izquierda) e inversor CC-CA (derecha).

Ubicados bajo tratamiento biológico

21.- Cuadros eléctricos bajo tratamiento biológico: conmutador alimentación baterías-grupo, control nivel de combustible grupo electrógeno y cuadro local bombas fango helicoidales (en orden de izda. a drcha.)

22.- Grupo electrógeno 11kVA de emergencia y depósito de combustible

23.- Interior cuadro conmutación fuente de energía: baterías - grupo electrógeno. La salida de éste cuadro alimenta al cuadro general de distribución de la planta.

24.- Cuadro General de Distribución, ubicado en edificio de servicios (a la derecha de la entrada de la planta)

25.- PLC de control general (izq.) y PLC de instrumentación (dcha.). Ubicados junto al CGD en edificio de servicios.

26.- Vista general de una de las dos líneas de tratamiento: decantador primario y biodisco

27.- Espesador estático de reciente instalación y depósitos enterrados de fango

ANEJO Nº 3.- ESTUDIO GEOLÓGICO Y GEOTÉCNICO

ANEJO Nº 3.- Estudio geológico y geotécnico INDICE

4	INTRODUCCIÓN 1
1	

1.-INTRODUCCIÓN

Se establecen en este documento los parámetros geológicos y geotécnicos más recomendables para el diseño estructural de las obras civiles del presente proyecto de acuerdo al Estudio Geotécnico realizado por la empresa INTEINCO a petición de Canal de Isabel II Gestión S.A., durante el mes de Noviembre de 2.015, estudio correspondiente a la parcela de la depuradora existente objeto de las actuaciones de este proyecto.

Dicho estudio ha consistido en los siguientes trabajos:

- o Recopilación y análisis de la documentación geológico-geotécnica de la zona.
- Inspección visual de los terrenos del entorno.
- Reconocimiento de la naturaleza y el comportamiento geotécnico de los terrenos afectados mediante sondeos, con ensayos SPT y toma de muestras en su interior.
- Determinación de posibles niveles freáticos mediante la instalación de tubería piezométrica en los sondeos.
- Identificación, clasificación y determinación de las características geotécnicas de los terrenos detectados, mediante ensayos de laboratorio sobre las muestras tomadas en los sondeos. Análisis de la agresividad del agua, en su caso.
- Análisis de los resultados obtenidos y estudio de las condiciones geológicogeotécnicas de los terrenos afectados por las obras previstas, con recomendaciones sobre los aspectos geotécnicos a considerar para el proyecto y ejecución de las mismas.

Teniendo en cuenta los datos obtenidos en el laboratorio tras la ejecución de tres sondeos a rotación, se presenta un perfil de terreno con los siguientes niveles:

- Rellenos superficiales. Aparecen el sondeo 3, más próximo al Arroyo de Rodajos, estos suelos arenosos muy alterados con un espeso de aproximadamente 1 m, los cuales parecen consecuencia de las obras de construcción de la propia E.D.A.R.
- Arenas algo arcillosas con cantos. Aparecen superficialmente en el Sondeo 2 y bajo los rellenos del Sondeo S3, no apreciándose en el Sondeo 1. Son suelos arenosos con algunos cantos, procedentes aparentemente de la alteración del granito, pudiendo tratarse al no apreciarse la estructura de la roca, de suelos redepositados. Presenta un espesor en torno a 1 m.

- Suelo residual de granito o jabre: Suelo arenosos, algo arcilloso y con gravas o cantos graníticos, procedente de la meteorización de la roca base y mantiene una gran compacidad. Su espesor es variable, alcanzando 1,55 m en el Sondeo 1, 2,90 m en el Sondeo 2 y hasta más de 5 m en el Sondeo 3.
- Roca granítica muy fracturada. Roca de grano medio-grueso. Que presenta localmente pequeñas zonas de alteración ligadas normalmente a las fracturas. Aparece bajo el suelo residual en los Sondeos 1 y 2, no apreciándose en el Sondeo 3.

Se ha detectado la presencia de agua en los Sondeos 1 y 2 en torno a los 2,70 m, mientras que en el Sondeo 3, más bajo y próximo al arroyo se detectó en el fondo del mismo y a bastante menor cota (772,7).

Ni el agua detectada ni los suelos contienen elementos que supongan problemas de agresividad a los hormigones de cimentación, de acuerdo con los criterios de la Instrucción EHE-08.

Pueden realizarse en la ejecución de las obras, excavaciones con medios convencionales en los niveles de suelos y con medios específicos de excavación en roca para este sustrato. Se consideran taludes en torno al 1 H:1 V en los rellenos y las arenas con cantos, del orden de 1 H : 3 V en los niveles de jabre y taludes subverticales en la roca. Los suelos procedentes de la excavación se pueden considerar como suelos "adecuados" en base a los criterios del PG-3.

Son factibles las cimentaciones directas por zapatas, losas o zapatas corridas. Recomendando presiones admisibles de 1,7 kp/cm² para apoyo sobre arenas con cantos y 2,30 kp/cm² para el nivel del jabre.

Estas conclusiones y recomendaciones se han obtenido del Informe Geotécnico, del que a continuación se adjunta una copia.

ANEXO Nº 1.- ESTUDIO GEOLÓGICO Y GEOTÉCNICO

INFORME SOBRE LOS TRABAJOS GEOTÉCNICOS PARA PROYECTO DE AMPLIACIÓN DE LA E.D.A.R. DE VALDEMAQUEDA.

Ref^a.: C-130014/18_M G-150014-M-IG/01 Noviembre 2015

PETICIONARIO: CANAL DE ISABEL II GESTIÓN S.A.

INFORME SOBRE LOS TRABAJOS GEOTÉCNICOS PARA PROYECTO DE AMPLIACIÓN DE LA E.D.A.R. DE VALDEMAQUEDA.

<u>ÍNDICE</u>

	<u>Página nº</u>
1 ANTECEDENTES	3
2 OBJETO	3
3 ALCANCE	3
4 DOCUMENTACIÓN DE REFERENCIA	4
5 TRABAJOS REALIZADOS Y RESULTADOS OBTENIDOS5.1 Análisis geológico e inspección visual del entorno.5.2 Reconocimiento geotécnico.5.3 Ensayos de laboratorio.	5
6 DESCRIPCIÓN DEL TERRENO6.1 Naturaleza y caracterización geotécnica del terreno.6.2 Aguas freáticas.	9
7 CONSIDERACIONES GEOTÉCNICAS 7.1 Excavaciones. 7.2 Cimentaciones.	12
8 CONCLUSIONES	16
ANEJOS:	
ANEJO I: Mapa geológico general.	
ANEJO II: Plano de situación de puntos de reconocimiento.	
ANEJO III: Registros de sondeos. Fotografías de los emplazamientos y las cajas de testigo.	
ANE IO IV: Resultados de ensavos de laboratorio	

DEPARTAMENTO: GEOTECNIA INFORME Nº: G-150014-M-IG/01

Proyecto: Ampliación de la E.D.A.R. de Valde	emaqueda.
Peticionario: Canal de Isabel II Gestión S.A.	Pedido: Trabajos geotécnicos.
Contrato Nº Refº: C-130014/18_M	Trabajos: Campo, laboratorio y gabinete.
Realizado por: J. C. de Castro	Fecha: Octubre-noviembre 2015

INFORME SOBRE TRABAJOS GEOTÉCNICOS

1.- ANTECEDENTES

A solicitud del Área de Proyectos de Saneamiento y Reutilización de Canal de Isabel II Gestión S.A., INTEINCO ha realizado los trabajos geotécnicos para el Proyecto de Ampliación de la E.D.A.R. de Valdemaqueda.

El proyecto comprende básicamente las siguientes actuaciones:

- Instalaciones de pretratamiento.
- Decantador primario de unos 6 m de diámetro.
- Reactor biológico, ocupando una superficie en torno a los 15x10 m².
- Decantadores secundarios de unos 6 m de diámetro.
- Pequeñas edificaciones auxiliares.

Para el reactor y decantadores se prevén excavaciones máximas de hasta unos 4 m bajo la rasante de la plataforma actual del terreno.

2.- OBJETO

El objeto de los trabajos realizados por INTEINCO es obtener la información geológicogeotécnica necesaria para un adecuado desarrollo del proyecto y de la ejecución de las obras de las nuevas instalaciones, en lo relativo a su interacción con el terreno.

3.- ALCANCE

El presente informe describe los distintos trabajos de reconocimiento geológico-geotécnico realizados y recoge los resultados obtenidos, concluyendo con un análisis de los condicionantes

geotécnicos para las obras previstas. En particular, el alcance del estudio corresponde al desarrollo de la siguiente metodología:

- Recopilación y análisis de la documentación geológico-geotécnica general disponible relacionada con los terrenos investigados.
- Inspección visual de los terrenos del entorno, para comprobación de los datos geológicos, con especial interés en la observación de afloramientos y de posibles desmontes o cortes del terreno.
- Reconocimiento de la naturaleza y el comportamiento geotécnico de los terrenos afectados mediante sondeos, con ensayos SPT y toma de muestras en su interior.
- Determinación de posibles niveles freáticos mediante la instalación de tubería piezométrica en los sondeos.
- Identificación, clasificación y determinación de las características geotécnicas de los terrenos detectados, mediante ensayos de laboratorio sobre las muestras tomadas en los sondeos. Análisis de la agresividad del agua, en su caso.
- Análisis de los resultados obtenidos y estudio de las condiciones geológico-geotécnicas de los terrenos afectados por las obras previstas, con recomendaciones sobre los aspectos geotécnicos a considerar para el proyecto y ejecución de las mismas.

4.- DOCUMENTACIÓN DE REFERENCIA

Para la realización del trabajo se han tenido en cuenta, básicamente los siguientes documentos:

- Plano topográfico de la parcela y entorno, así como datos y planos sobre el proyecto de las actuaciones previstas, facilitados por el Peticionario.
- Mapa Geológico de España, escala 1:50.000. Hoja nº532: Las Navas del Marqués. I.T.G.E.
- Código Técnico de la Edificación CTE. SE: Cimientos.
- Normas UNE para realización de ensayos "in situ" y de laboratorio de suelos.
- Norma de Construcción Sismorresistente NCSE-02.
- Instrucción de Hormigón Estructural, EHE-08. Ministerio de Fomento.

5.- TRABAJOS REALIZADOS Y RESULTADOS OBTENIDOS

5.1.- Análisis geológico e inspección visual del entorno

Para alcanzar el objetivo del estudio, en primer lugar se hizo una recopilación y análisis de la documentación geológico-geotécnica general existente sobre los terrenos de la zona, complementada con una inspección del entorno.

Desde el punto de vista geológico (ver Mapa Geológico en Anejo I), todo el entorno de Valdemaqueda se enmarca en el conjunto igneo y metamórfico del Macizo Hespérico, con edades precámbricas-ordovícicas. En este conjunto aparecen materiales metasedimentarios y ortoneísicos constituyendo afloramientos como el de El Escorial-Villa del Prado, así como diversos granitoides hercínicos tardi y postcinemáticos con respecto a las fases tectónicas principales, que intruyen sobre los ortoneises y metasedimentos.

En particular en el entorno de la EDAR de Valdemaqueda, el Mapa Geológico identifica los granitoides como adamellitas con megacristales y microagregados biotíticos Tipo Las Navas del Marqués (unidad "12"). Estos materiales son claramente visibles en los afloramientos rocosos del entorno.

Superficialmente, los terrenos graníticos presentan una zona de alteración más o menos significativa, dando lugar a suelos residuales de cantos graníticos en una matriz arenosa algo arcillosa. Estos suelos de alteración, en los que todavía se aprecia la estructura de la roca, presentan en general gran compacidad y se conocen con el nombre de "jabre".

Desde el punto de vista hidrogeológico el sustrato granítico resulta prácticamente impermeable, si bien localmente puede presentar permeabilidad por fisuración. Los suelos superficiales de alteración pueden constituir acuíferos libres superficiales, más o menos significativos en función de su espesor, aunque generalmente muy ligados a la pluviometría.

Por otra parte, desde el punto de vista sísmico y según la normativa sismorresistente vigente (NCSE-02), todo el entorno reconocido se encuentra situado en una zona de mínimo riesgo, por lo que no son necesarias comprobaciones en este sentido en los proyectos.

5.2.- Reconocimiento geotécnico

Para el reconocimiento del terreno en la zona de actuación se han realizado 3 sondeos mecánicos, cuya situación se refleja en el plano del Anejo II.

La profundidad de los sondeos y su cota de boca, obtenida a partir del plano topográfico facilitado, son las siguientes:

SONDEO	COTA DE BOCA (m)	PROFUNDIDAD (m)
S-1	780,2	6,7
S-2	780,1	7,0
S-3	777,3	5,0

Los sondeos se han realizado a rotación, con batería provista de corona de widia o diamante (en los niveles de roca), con recuperación continua de testigo y un diámetro de perforación de 116 a 86 mm. Si las paredes del sondeo se mostraban inestables se procedía a la entubación del mismo antes de realizar las maniobras de avance. Durante la perforación y en función del tipo de terreno, se realizaban ensayos normales de penetración (SPT), de acuerdo con la Norma UNE-EN ISO 22476-3 y tomas de muestras inalteradas con tomamuestras de pared gruesa. En total se han realizado en los tres sondeos 3 ensayos SPT y 2 tomas de muestra inalterada, según recoge el Cuadro 1.

CUADRO 1. MUESTRAS Y ENSAYOS EN SONDEOS

SONDEO	PROF. (m)	TIPO MUESTRA	GOLPEOS	N ₃₀	TERRENO
S-1	1,50-1,57	SPT	50 R	R	Contacto jabre-granito
S-2	1,50-1,87	INALT	26-35-50 R	R	Jabre
02	2,90-2,93	SPT	50 R	R	Contacto jabre-granito
S-3	1,50-2,10	SPT	8-8-9-11	17	Arenas algo arcillosas con cantos
3-3	2,50-2,75	INALT	33-50 R	R	Jabre

El testigo recuperado en la perforación se introducía en cajas de plástico, con separaciones longitudinales, disponiéndolo según el orden de extracción y anotando en las mismas, mediante separadores transversales, las cotas de extracción y las tomas de

las distintas muestras, de manera que pudiera hacerse correctamente el levantamiento de la columna litológica del terreno.

Durante la ejecución de los sondeos se prestó especial atención a la posible presencia de agua, anotándose las cotas de aparición y la evolución de los niveles a lo largo de la perforación. Una vez terminado un sondeo, se colocaba tubería de PVC ranurada para el seguimiento de los niveles a lo largo del tiempo. Se dispuso tubería en los sondeos S-1 y S-3.

Las columnas litológicas de los sondeos y toda la información referente a los mismos se recogen en los correspondientes registros, que junto a las fotografías de los emplazamientos y de las cajas de testigo, se incluyen en el Anejo III.

5.3.- Ensayos de laboratorio

Sobre diversas muestras de suelos y roca tomadas en los sondeos, se han realizado los ensayos de laboratorio siguientes:

- 3 Uds. de análisis granulométrico por tamizado, s/UNE 103101.
- 3 Uds. de determinación de los límites de Atterberg, s/UNE 103103 y 103104.
- 2 Uds. de determinación de la humedad natural, s/UNE 103300.
- 4 Uds. de determinación de la densidad aparente y seca, s/UNE 103301.
- 3 Uds. de determinación del contenido en sulfatos solubles, s/UNE 103201.
- 2 Uds. de determinación del contenido en materia orgánica, s/UNE 103204.
- 1 Uds. Ensayo de corte directo en suelos con consolidación y drenaje, s/UNE 103401.
- 2 Uds. Ensayo de compresión simple en testigo de roca, s/UNE 22-950-90.

Por otra parte, sobre una muestra de agua tomada en el sondeo S-1, se realizaron las determinaciones indicadas en la EHE-08 para analizar su posible agresividad al hormigón.

En el Anejo IV se incluyen los resultados de todos estos ensayos. En el Cuadro adjunto se presenta un resumen de los mismos.

Para la ejecución material de los ensayos, se ha contado con la colaboración del laboratorio de Eptisa en Madrid, inscrito en el Registro General de Laboratorios de Ensayos para el Control de la Calidad del Ministerio de Fomento.

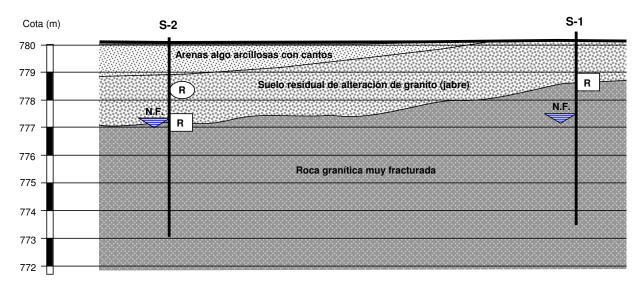
CUADRO 2. RESUMEN DE RESULTADOS DE ENSAYOS DE LABORATORIO

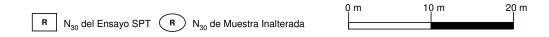
L L	PROFUNDIDAD	TIPO DE	GRANULOMETRÍA	METRÍA	LIMITES DE ATTERBERG		MEDAD D	ENSIDAD		SULFATOS	MATERIA	RESISTENCIA	CLASIFICACIÓN
SONDEO	(m)	MUESTRA	<0,080mm <2mm (%)	<2mm (%)	LL. L.P.	I.P. ((%)	(g/cm3)	APARENTE (g/cm3)	SOLUBLES (%)	(%)	(%) $(kp/cm^2)/(9)$	NIVEL
S-2	1,50-1,87	INALT	13,5	68,2	No plástico		4,3	1,79	1,87	0,000	0,11	c′=0,55 Ø′=31º	SM Jabre
S-3	1,50-2,10	SPT	18,8	73,5	No plástico					0,008	0,26		SM Arena con cantos
S-3	2,50-2,75	INALT	10,5	73,8	No plástico		4,4	1,94	2,03	0,000	0,41		SW-SM Jabre
S-1	2,30-2,60	Testigo roca	O	ensidad:	Densidad: 2,6 g/cm³			Resis	tencia a co	Resistencia a compresión simple: 730,7 kp/cm²	imple: 730	,7 kp/cm²	
S-2	3,70-3,90	Testigo roca	Q	ensidad:	Densidad: 2,6 g/cm³			Resis	tencia a co	Resistencia a compresión simple: 625,2 kp/cm ²	imple: 625	,2 kp/cm²	
Muestra	Muestra de agua S-3	pH: 7,1	Residu 255	Residuo seco: 255 mg/l	Sulfatos: 29 mg/l	Magnesio: 4 mg/l		CO ₂ agresivo: 0 mg/l		Amonio NH₄⁺: 0 mg/l	*	Agresividad (EHE-08): No agresiva	:HE-08): iva

6.- DESCRIPCIÓN DEL TERRENO

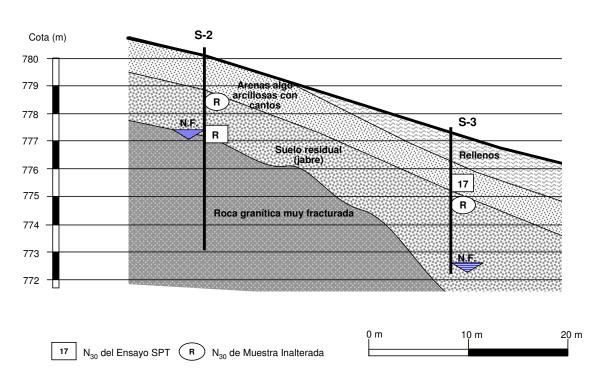
6.1.- Naturaleza y caracterización geotécnica del terreno

A partir de los resultados de los sondeos realizados (ver registros de los sondeos en el Anejo III), se han elaborado los perfiles litológicos esquemáticos adjuntos, donde puede verse que el terreno en la zona reconocida aparece constituido por los siguientes niveles:


- Rellenos superficiales. En el sondeo S-3 se aprecia un pequeño espesor (1 m) de suelos arenosos muy alterados con algún bolo suelto de granito, que se han interpretado como rellenos procedentes de las obras de construcción de la EDAR acumulados en esta zona de pendiente hacia el arroyo. Sobre estos suelos de mala calidad geotécnica no cabe considerar ninguna actuación.
- Arenas algo arcillosas con cantos. Superficialmente en el sondeo S-2 y debajo de los rellenos en el S-3, se detecta una zona de suelos arenosos con algunos cantos, presumiblemente procedentes de la alteración del granito pero donde no se aprecia la estructura de la roca, pudiendo tratarse incluso de suelos redepositados (coluviones). El espesor de este nivel está en general en torno a 1 m, aunque no llega a detectarse en el sondeo S-1, posiblemente por encontrarse éste en una zona de desmonte excavada en su día para la explanación de la EDAR. Se diferencia del nivel inferior de jabre por un claro contraste en su compacidad, obteniéndose en un ensayo SPT en este nivel un valor de N₃₀=17, que refleja una compacidad media.


El ensayo en laboratorio (ver Cuadro 2) confirma una granulometría claramente arenosa, con algunos finos (18,8%) no plásticos y un cierto porcentaje de gravas (26,5%). La muestra presentó un contenido en materia orgánica del 0,26% y mínimos indicios de sulfatos solubles, sin problemas de agresividad al hormigón.

• Suelo residual de granito o jabre. Se trata de un suelo arenoso, algo arcilloso y con gravas o cantos graníticos, procedente de la meteorización de la roca base. En general se aprecia la estructura de la roca de origen y el suelo mantiene una gran compacidad, puesta en este caso de manifiesto por los golpeos de rechazo obtenidos en la hinca del tomamuestras para las dos muestras inalteradas. No se dispone de ensayos SPT pues los dos ensayos realizados en los sondeos S-1 y S-2, iniciados en este nivel, dieron un rechazo muy brusco al encontrar el nivel netamente rocoso inmediatamente debajo, pero se estiman valores de N₃₀ del SPT por encima de 40-50.



PERFIL LITOLÓGICO ESQUEMATICO S-2 / S-1

PERFIL LITOLÓGICO ESQUEMATICO S-2 / S-3

La profundidad que alcanza este nivel puede presentar variaciones significativas en pequeñas distancias. Así alcanza hasta 1,55 m en el S-1, hasta 2,90 m en el S-2 y hasta más de 5,0 m en el S-3, donde no llega a alcanzarse el nivel de roca. Por ello deben considerarse con precaución las interpolaciones intermedias.

Para dos muestras ensayadas de estos suelos (ver Cuadro 2) se obtuvieron granulometrías netamente arenosas, con pocos finos (10,5-13,5%) no plásticos y pequeños porcentaje de gravas (26,2-31,8%). Su contenido en materia orgánica oscila entre 0,11-0,41% y no presentan contenidos apreciables de sulfatos solubles que puedan resultar agresivos al hormigón.

Su humedad natural es baja (4,3-4,4 %), con densidad seca de 1,79-1,94 g/cm³ y densidad aparente de 1,87-2,03 g/cm³.

En un ensayo de corte, con consolidación y rotura con drenaje, los parámetros de resistencia al corte obtenidos fueron c´= 0,55 kp/cm² y \varnothing ´= 31 $^{\circ}$.

• Roca granítica muy fracturada. Bajo el nivel anterior y a partir de las profundidades indicadas aparece el sustrato rocoso granítico muy fracturado. Este nivel netamente rocoso no se llega a detectar en el S-3. En general se aprecia una roca de grano medio-grueso, que localmente presenta pequeñas zonas de alteración normalmente ligadas a las fracturas. Su carácter rocoso hizo necesaria su perforación con diamante y aporte de agua, lo que hace que las zonas de alteración se laven con la perforación y aparezcan como "vacíos" en las cajas de testigo. Se trata de un macizo rocoso que podemos catalogar como de calidad media por su grado de fracturación, reflejado en valores del RQD entre 43 y 80. Por lo que se refiere a la roca matriz, en dos ensayos de compresión simple se han obtenido resistencias de 730-625 kp/cm², pudiendo clasificarse como una roca dura.

6.2.- Aguas freáticas

Durante la perforación de los sondeos se prestó especial atención a la presencia de agua en los mismos.

En el sondeo S-1 se perfora con agua a partir de 1,55 m de profundidad, con pérdidas del agua de perforación locales y más o menos significativas, asociadas a la fracturación y zonas de alteración. Al terminar el sondeo, se vacía del agua de perforación, observándose una rápida recuperación del nivel de agua, que queda estable a los 2,7 m (cota 777,5).

En el sondeo S-2 se perfora con agua a partir de unos 2,9 m de profundidad, observándose igualmente pérdidas de agua locales y más o menos significativas, asociadas a la fracturación y zonas de alteración. El nivel de agua se estabiliza a los 2,8 m de profundidad (cota 777,3), muy parecida al caso del S-1.

El sondeo S-3 se realizó en seco, sin detectar aguas freáticas durante la perforación. En las horas posteriores se aprecia una ligera afluencia de agua hacia el fondo, tendiendo a estabilizarse el nivel de agua a 4,6 m de profundidad (cota 772,7).

En la tabla siguiente se resumen estos resultados. Como referencia se señala que el lecho del arroyo en esta zona discurre aproximadamente paralelo a la parcela aproximadamente entre las cotas 775 a 773,5.

NIVELES DE AGUA

0-11-	Se detecta	Se estabiliza
boca (m)	Prof. (m) Cota	Prof. (m) Cota
780,2	No (hasta 1,55 m)	2,7 777,5
780,1	No (hasta 2,9 m)	2,8 777,3
777,3	No (hasta 5,0 m)	4,6 772,7
	780,2 780,1	Cota de boca (m) Prof. (m) Cota 780,2 No (hasta 1,55 m) 780,1 No (hasta 2,9 m)

No obstante lo anterior, debemos hacer constar que estas medidas pueden sufrir variaciones apreciables en función de la pluviometría, ya que están muy ligadas a la infiltración superficial.

Sobre una muestra de aguas freáticas tomada en el sondeo S-1, se realizaron las determinaciones indicadas en la EHE-08 para analizar su posible agresividad al hormigón. De acuerdo con los resultados obtenidos (ver Cuadro 2), el agua resulta no agresiva.

7.- CONSIDERACIONES GEOTÉCNICAS

7.1.- Excavaciones

De acuerdo con la información facilitada, para las nuevas instalaciones a construir se preven excavaciones bajo la explanada actual de hasta unos 4 m (en torno a la cota 776),

desarrolladas principalmente en el entorno de los sondeos S-1 y S-2 y bastante separadas de las instalaciones de depuración actuales.

Estas excavaciones afectarían en general (ver perfiles) al nivel superior de arenas algo arcillosas con cantos, al nivel de jabre y al sustrato rocoso granítico. En estas condiciones, la ejecución de las excavaciones en los niveles de suelos podrá realizarse con medios mecánicos convencionales y taludes laterales. Al alcanzar el nivel de roca será necesario el empleo de medios específicos de excavación en roca: martillo neumático, cementos expansivos, cuñas hidráulicas, etc, desechándose las voladuras por los pequeños volúmenes a escabar y las condiciones del entorno próximo. Estas excavaciones no afectarían prácticamente a las principales instalaciones existentes.

Hacia el entorno del sondeo S-3, topográficamente más bajo, las posibles excavaciones no llegarían a alcanzar la roca.

Para los niveles de suelos, dadas sus características geotécnicas y la experiencia, se recomiendan taludes de excavación en torno al 1:1 (H:V) en los posibles rellenos y las arenas con cantos y del orden de 1:3 en los niveles de jabre. En roca pueden considerarse taludes prácticamente verticales, si bien, dado el grado de fracturación del macizo, deberá prestarse atención a eliminar los posibles bloques que puedan suponer riesgo de caídas.

Con excavaciones hasta el entorno de la cota 776, se estaría por debajo de los niveles de agua observados en los sondeos S-1 y S-2, lo que implica la presencia de agua en las excavaciones. No obstante, las condiciones hidrogeológicas y topográficas son tales que los posibles caudales de agua hacia las excavaciones serían en general de poca importancia y sin problemas de evacuación significativos. En este sentido las condiciones pueden variar significativamente dependiendo de la época del año en que se realicen las excavaciones, aconsejándose las épocas secas. En todo caso, sí deberá tenerse en cuenta esta presencia de agua a efectos de posibles subpresiones bajo las soleras o losas de cimentación.

Desde el punto de vista de su posible aprovechamiento, al margen de los rellenos superficiales, todos los suelos arenosos procedentes de la excavación pueden considerarse, a partir de los ensayos realizados, como suelos "adecuados" con los criterios del PG-3.

Para el diseño de los muros, el cálculo de empujes del terreno deberá hacerse con parámetros geotécnicos acordes a las características que se prevean para el relleno de trasdós. En este sentido, los suelos arenosos procedentes de las excavaciones pueden considerarse aptos para dichos rellenos compactados. Así, para la evaluación de los empujes de los suelos sobre los muros, suponiendo que el relleno del trasdós se realiza con los mismos materiales arenosos excavados compactados, pueden considerarse los siguientes parámetros:

Cohesión efectiva (Kp/cm²) 0,2 Ángulo de roz. interno efectivo (º) 32º Peso específico aparente (t/m³) 2,0

El nivel de roca puede considerarse que no produce empujes sobre los muros, aunque sí deberá contarse con el posible empuje hidrostático por presencia de agua en el macizo.

7.2.- Cimentaciones

Con excavaciones de hasta unos 4 m, las rasantes de excavación quedarían en general salvo en el entorno del sondeo S-3, sobre el sustrato rocoso.

Para cimentaciones sobre este sustrato, es obvia la posibilidad de cimentaciones directas mediante zapatas aisladas o corridas. La resistencia de la roca es más que suficiente para las obras previstas, pero para evitar posibles problemas por condiciones de apoyo algo heterogéneas ante la presencia de pequeñas zonas de alteración, no se recomienda diseñar cimentaciones por encima de los 5 kp/cm² de presión admisible. En todo caso se recomiendan para las zapatas unas dimensiones mínimas de 1x1 m² para zapatas aisladas y 0,6 m para zapatas corridas, para prever posibles concentraciones de tensiones, excentricidades, defectos constructivos, etc.

Para pequeñas estructuras auxiliares, salvando siempre los rellenos, la cimentación podría quedar sobre los suelos arenosos algo arcillosos superficiales, o alcanzar el nivel de jabre. En estos niveles pueden considerarse cimentaciones directas mediante zapatas, zapatas corridas o pequeñas losas.

Para el diseño de una cimentación directa por zapatas en suelos arenosos, la presión admisible para su diseño viene condicionada más que por la resistencia de las arenas por la necesaria limitación de asientos y puede obtenerse, de acuerdo con el Código Técnico de la Edificación (DB SE-C, apartado 4.3.3), con las siguientes expresiones:

$$q_{adm} = 12 \ N_{SPT} \left(1 + \frac{D}{3 \ B} \right) \left(\frac{S_T}{25} \right)$$
 para B <1,20 m

$$\mathbf{q}_{adm} = 8 N_{SPT} \left(1 + \frac{D}{3B} \right) \left(\frac{S_T}{25} \right) \left(\frac{B + 0.3}{B} \right)^2 \quad \text{para B } \ge 1,20 \text{ m}$$

siendo "q" la presión admisible en kN/m^2 , " N_{SPT} " el valor medio del parámetro N_{30} del ensayo SPT en la zona de afectación de la cimentación, "D" la profundidad de empotramiento de la cimentación en el terreno en metros, " S_T " el asiento total admisible en milímetros y "B" el ancho de la zapata en metros. El valor de D/3B no puede tomarse mayor de 0,3.

Teniendo en cuenta los resultados de los ensayos realizados, podemos considerar para las cimentaciones apoyadas sobre las arenas más superficiales un valor conservador de $N_{SPT}=15$. Despreciando el pequeño efecto del empotramiento de la zapata, con un asiento admisible habitual de 25 mm (1 pulgada) y suponiendo zapatas en torno a unos 1,5 m de lado, se obtendría una presión admisible $q_{adm}=173 \text{ kN/m}^2$ (1,7 kp/cm²).

No obstante, salvo el caso de cimentaciones muy superficiales, el nivel afectado por las cimentaciones sería el de jabre. En este caso se plantea otra problemática ligada al contraste de rigideces entre la roca más o menos sana y este nivel de suelo residual, con un contacto entre ambos que puede ser muy irregular. Así una cimentación podría quedar afectando en unas zonas en todo el bulbo de presiones al jabre y en otras al nivel de roca. Para evitar que ello pueda suponer asientos diferenciales inadmisibles será necesario limitar los asientos en la zona de jabre. Limitando estos asientos a unos 10 mm, tomando $N_{\rm SPT}$ =50 y suponiendo zapatas en torno a unos 1,5 m de lado, se obtendría una presión admisible $q_{\rm adm}$ = 230 kN/m² (2,3 kp/cm²).

En definitiva, para zapatas apoyadas sobre las arenas más superficiales puede considerarse una presión admisible de 1,7 kp/cm² y para zapatas sobre el nivel de jabre de 2,3 kp/cm².

Para el diseño de posibles cimentaciones por losas, dadas las características de las obras, las presiones medias reales de trabajo serían pequeñas y perfectamente admisibles, pudiendo tomarse los valores anteriores de 1,7 y 2,3 kp/cm² como admisibles para las presiones máximas locales bajo la losa, en función de su terreno de apoyo.

En los casos de cimentaciones continuas, la interacción terreno-estructura puede tenerse en cuenta a partir de parámetros como el coeficiente de balasto en placa de 30x30 cm, K_{30} . Este es un valor de referencia que, salvo que puedan hacerse ensayos de carga con placa, suele tomarse de tablas. Por otra parte hay que señalar que variaciones importantes en el valor de este parámetro introducen sólo pequeñas variaciones en el diseño final de las cimentaciones. En nuestro caso, a partir de las características de los distintos niveles, se puede considerar $K_{30} = 4,0 \text{ kp/cm}^3$ (40 MN/m³) para el apoyo en las arenas superficiales, $K_{30} = 20 \text{ kp/cm}^3$ (200 MN/m³) para el jabre y del orden de $K_{30} = 500 \text{ kp/cm}^3$ (5.000 MN/m³) para la roca.

Finalmente se recuerda que ni el agua que pueda afectar a las cimentaciones ni los suelos contienen elementos que supongan problemas de agresividad a los hormigones de cimentación, de acuerdo con los criterios de la Instrucción EHE-08.

8.- CONCLUSIONES

A solicitud del Área de Proyectos de Saneamiento y Reutilización de Canal de Isabel II Gestión S.A., INTEINCO ha realizado los trabajos geotécnicos para el Proyecto de Ampliación de la E.D.A.R. de Valdemaqueda. Las nuevas actuaciones comprenden básicamente una nueva linea de tratamiento formada por varios decantadores y un reactor biológico, con excavaciones máximas de hasta unos 4 m bajo la rasante de la plataforma actual del terreno, además de otras pequeñas instalaciones auxiliares.

Para el reconocimiento del terreno se han realizado tres sondeos mecánicos de entre 5 y 7 m de profundidad, cuya situación se indica en el plano del Anejo II. En ellos se realizaron ensayos SPT y se tomaron muestras de suelos y rocas para su caracterización geotécnica en laboratorio.

Del reconocimiento realizado se deduce que el terreno en la zona presenta los siguientes niveles:

- Rellenos superficiales. Son suelos arenosos muy alterados que sólo aparecen en el sondeo S-3, con espesor en torno a 1 m, y que parecen consecuencia de las obras de construcción de la EDAR.
- Arenas algo arcillosas con cantos. Superficialmente en el sondeo S-2 y debajo de los rellenos en el S-3, se detecta una zona de suelos arenosos con algunos cantos, presumiblemente procedentes de la alteración del granito pero donde no se aprecia la estructura de la roca, pudiendo tratarse incluso de suelos redepositados (coluviones).

El espesor de este nivel está en general en torno a 1 m, aunque no llega a detectarse en el sondeo S-1, situado en zona de desmonte para la construcción de la EDAR. Se diferencia del nivel inferior de jabre por un claro contraste en su compacidad, obteniéndose en un ensayo SPT en este nivel un valor de N₃₀=17.

- Suelo residual de granito o jabre. Se trata de un suelo arenoso, algo arcilloso y con gravas o cantos graníticos, procedente de la meteorización de la roca base y que mantiene una gran compacidad (se considera N₃₀=50). La profundidad que alcanza este nivel puede presentar variaciones significativas en pequeñas distancias. Así alcanza hasta 1,55 m en el sondeo S-1, hasta 2,90 m en el S-2 y hasta más de 5,0 m en el S-3, donde no llega a alcanzarse el nivel de roca. Por ello deben considerarse con precaución las interpolaciones intermedias.
- Roca granítica muy fracturada. Bajo el nivel anterior y a partir de las profundidades indicadas aparece el sustrato rocoso granítico muy fracturado. Este nivel netamente rocoso no se llega a detectar en el S-3. En general se aprecia una roca de grano medio-grueso, que localmente presenta pequeñas zonas de alteración normalmente ligadas a las fracturas. El macizo rocoso lo podemos catalogar como de calidad media, con valores del RQD entre 43 y 80. La roca matriz puede clasificarse como una roca dura, con resistencia a compresión de 730-625 kp/cm².

En los sondeos S-1 y S-2 se detectó la presencia de agua a una profundidad estable en torno a los 2,7 m (cotas 777,5-777,3), mientras que en el sondeo S-3, más bajo y proximo al arroyo, sólo se detectó agua hacia el fondo del sondeo y a bastante menor cota (772,7). No obstante estas medidas pueden sufrir variaciones apreciables en función de la pluviometría, ya que están muy ligadas a la infiltración superficial.

Para la ejecución de las obras, con excavaciones de hasta unos 4 m de profundidad, que afectarán de una u otra forma a los distintos niveles, pueden realizarse excavaciones ataluzadas ejecutadas con medios mecánicos convencionales en los niveles de suelos y con medios específicos de excavación en roca para este sustrato. Se consideran taludes de excavación en torno al 1:1 (H:V) en los posibles rellenos y las arenas con cantos, del orden de 1:3 en los niveles de jabre y taludes subverticales en la roca. Los suelos procedentes de la excavación pueden considerarse como suelos "adecuados" con los criterios del PG-3.

Salvo épocas de fuertes lluvias, no se considera que las aguas detectadas supongan problemas significativos para la ejecución de las obras previstas, siendo posible su evacuación.

Respecto a las cimentaciones, son factibles cimentaciones directas por zapatas, zapatas corridas o losas. Para su diseño se recomiendan presiones admisibles de $q_{adm}=1.7~kp/cm^2$ para apoyo sobre las arenas con cantos y $q_{adm}=2.3~kp/cm^2$ para el nivel de jabre. Para cimentaciones continuas por losas, dada la tipologia de las obras previstas, las presiones medias serían poco significativas, pudiendo considerarse localmente como presiones máximas las indicadas. En los casos de cimentaciones continuas se pueden considerar coeficientes de balasto $K_{30}=4.0~kp/cm^3~(40~MN/m^3)$ para el apoyo en las arenas superficiales, $K_{30}=20~kp/cm^3~(200~MN/m^3)$ para el jabre y del orden de $K_{30}=500~kp/cm^3~(5.000~MN/m^3)$ para la roca.

Ni el agua detectada ni los suelos contienen elementos que supongan problemas de agresividad a los hormigones de cimentación, de acuerdo con los criterios de la Instrucción EHE-08, por lo que no será necesario tomar medidas en este sentido.

Este informe consta de dieciocho páginas numeradas y selladas y cuatro anejos de 2, 2, 10 y 17 páginas respectivamente.

Madrid, noviembre de 2015

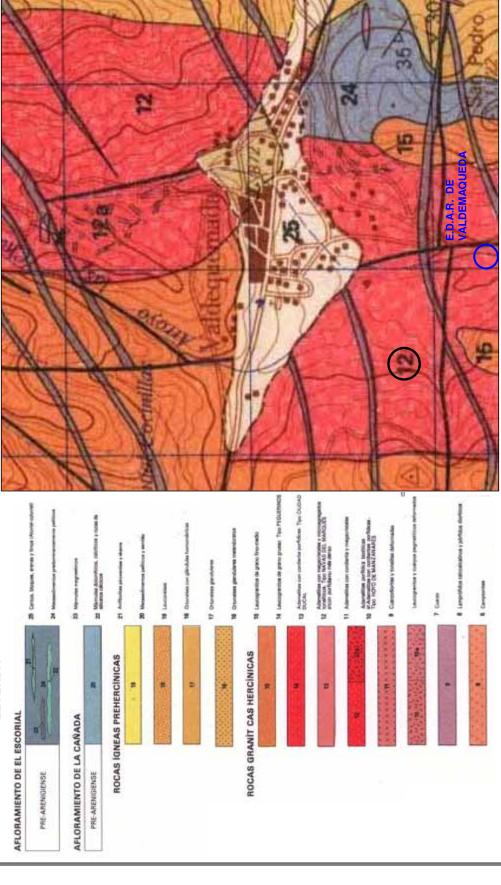
JEFE DEL DEPARTAMENTO
DE GEOTECNIA

VºBº DIRECTOR GENERAL

José C. de Castro Gutiérrez Ingeniero de Caminos Valentín Trijueque Gutiérrez de los Santos Ingeniero Técnico de Obras Públicas

Ref^a.: C-130014/15_M G-150011-M-IG/01 Página 18 de 18

ANEJOS

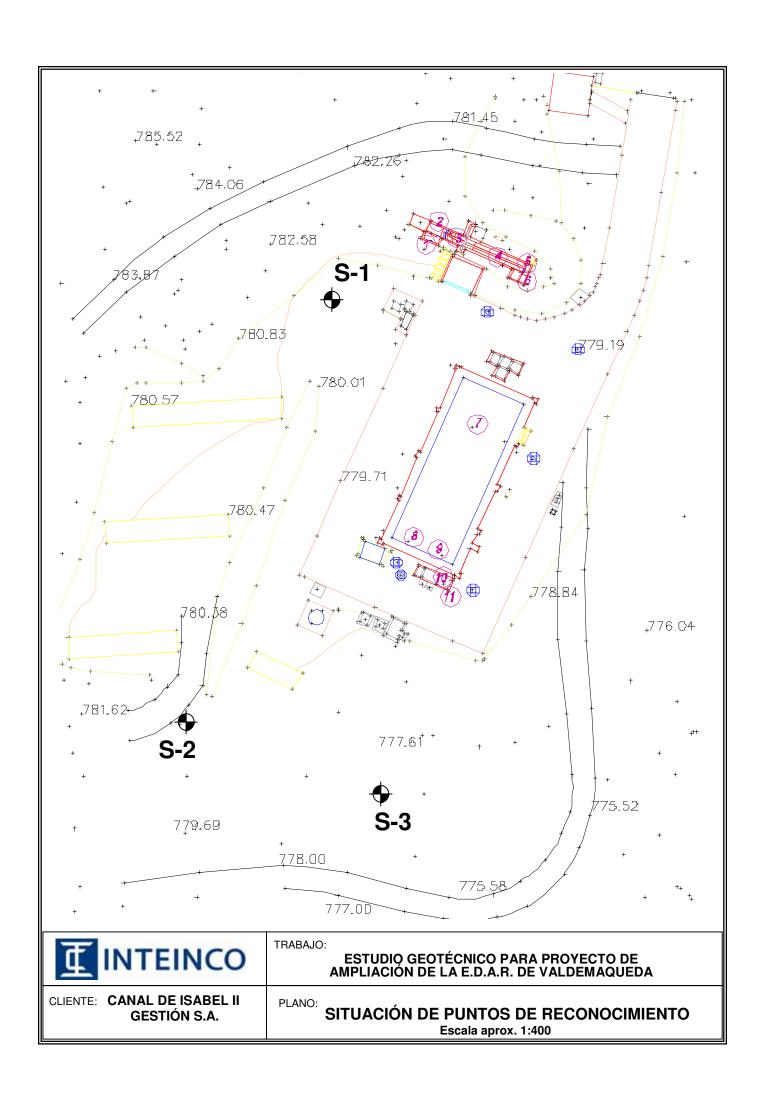

<u>ANEJO I</u>

MAPA GEOLÓGICO GENERAL

MAPA GEOLÓGICO GENERAI

(Tomado de Mapa Geológico de España 1:50.000. Las Navas del Marqués - 532)

CANAL DE ISABEL II GESTIÓN S.A.


TRABAJOS GEOTÉCNICOS PARA PROYECTO DE AMPLIACIÓN DE LA E.D.A.R. DE VALDEMAQUEDA

REF^a.: C-130014/18_M G-150014-M-IG

<u>ANEJO II</u>

PLANO DE SITUACIÓN DE PUNTOS DE RECONOCIMIENTO.

ANEJO III

REGISTROS DE SONDEOS. FOTOGRAFÍAS DE LOS EMPLAZAMIENTOS Y DE LAS CAJAS DE TESTIGO.

SONDEO Nº: S-1

Cota boca: 780,2

Fecha: 08-10-2015

Trabajo: E.G. Ampliación E.D.A.R. de Valdemaqueda

Peticionario: CANAL DE ISABEL II Gestión

Ref.: C-130014/18_M

Profundidad	Litología	Descripción	Profundidad muro del nivel	Muestras y golpeos	Nivel de agua	LL	LP	% Finos	Humedad natural %	Densidad seca g/cm3	Comp. Simple Kp/cm2	Observaciones
		Capa vegetal Arena algo arcillosa con cantos de granito. Suelo residual de alteración del granito (jabre)	1.55	1,50-1,57 SPT (50 R)								
	****** ****** ****** ****** ****** ******	alteración, que se lavan al perforar, más abundantes hacia la base	6.70	2,30-2,60 Testigo de roca	2.70						731	

SPT Ensayo normal de penetración MI Muestra inalterada a percusión T.P. Testigo parafinado

Sistema de perforación: A rotación. Bateria. Corona de widia y diamante.

Diámetro de perforación: 116-101-86 mm.

Revestimiento: 113 mm hasta 1,6 m

Sondista: Macias

Máquina: Rolatec RL-48-L

EG001.RO

SONDEO Nº: S-2

Cota boca: 780,1

Fecha: 08-10-2015

Trabajo: E.G. Ampliación E.D.A.R. de Valdemaqueda

Peticionario: CANAL DE ISABEL II Gestión

Ref.: C-130014/18_M

Profundidad	Litologia	Descripción	Profundidad muro del nivel	Muestras y golpeos	Nivel de agua	LL	LP	% Finos	Humedad natural %	Densidad seca g/cm3	Comp. Simple Kp/cm2	Observaciones
		Arenas con cantos. Nivel superficial muy alterado.	1.20									
		Arena algo arcillosa con cantos de granito. Suelo residual de alteración del granito (jabre)	2.90	1,50-1,87 M.I. (26-35-50 R) 2,90-2,93 SPT (50R)	2.80	N.P.	N.P.	13,5	4,3	1,79		%SO4=0,000 %Mat.Org.=0,11 c=0,55kp/cm2 Ø=31
	****** ****** ****** ****** ****** ******	Roca granítica de grano medio-grueso, muy fracturada. 2,90 a 4,70 m, RQD=70		3,70-3,90 Testigo de roca							625	
		4,70 a 7,0 m, RQD=43	7.00									

SPT Ensayo normal de penetración MI Muestra inalterada a percusión T.P. Testigo parafinado

Sistema de perforación: A rotación. Bateria. Corona de widia y diamante.

Diámetro de perforación: 101-86 mm.

Revestimiento: 98 mm hasta 2,9 m

Sondista: Macias

Máquina: Rolatec RL-48-L

EG001.RO

SONDEO Nº: S-3

Cota boca: 777,3

Fecha: 08-10-2015

Trabajo: E.G. Ampliación E.D.A.R. de Valdemaqueda

Peticionario: CANAL DE ISABEL II Gestión

Ref.: C-130014/18_M

Profundidad	Litología	Descripción	Profundidad muro del nivel	Muestras y golpeos	Nivel de agua	LL	LP	% Finos	Humedad natural %	Densidad seca g/cm3	Comp. Simple Kp/cm2	Observaciones
		Rellenos superficiales arenosos con bolo de granito.	1.00									
		Arenas algo arcillosas con cantos. Nivel superficial muy alterado.	2.10	1,50-2,10 SPT (8-8-9-10)		N.P.	N.P.	18,8				%SO4=0,008 %Mat.Org.=0,26
		Arena algo arcillosa con cantos de granito. Suelo residual de alteración del granito (jabre)		2,50-2,75 M.I. (33-50R)		N.P.	N.P.	10,5	4,4	1,94		%SO4=0,000 %Mat.Org.=0,41
			5.00		4.60							
	0.10,20.1											

SPT Ensayo normal de penetración MI Muestra inalterada a percusión T.P. Testigo parafinado

Sistema de perforación: A rotación. Bateria. Corona de widia.

Diámetro de perforación: 116-101 mm.

Revestimiento: No

Sondista: Macias

Máquina: Rolatec RL-48-L

EG001.RO

ANEJO IV

RESULTADOS DE ENSAYOS DE LABORATORIO

EPTISA, SERVICIOS DE INGENIERIA, S. L.
c/ María Tubau, 8
28050-MADRID
fuencarral@eptisa.com

Tef.913 589 077 Fax. 913 589 845

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31782

CLAVE:

Hoja 1 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19-10-2015

Lugar de entrega:

Procedencia:

Sondeo 2. Muestra inalerada. Profundidad de 1,50 a 1,87 m.

ENSAYOS SOLICITADOS

Análisis granulométrico.

Humedad natural.

Densidades húmeda y seca.

Límites de Atterberg. Límite líquido.

Límites de Atterberg. Límite plástico.

Contenido en sulfatos.

Materia orgánica.

Corte Directo CD.

Observaciones:

10. a 29/10/2015

JOSE CLAUDIO SERRANO CHECA

Jefc de Área

Fdo

Director de laboratorio

V.º B.º: ELENA LOPEZ URGOITI

eptisa, servicios de Ingenieria, s. L. c/ María Tubau, 8 28050-MADRID fuencarral@eptisa.com Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

Tef.913 589 077 Fax. 913 589 845 GT, VS, PS, EH, EA, EFA, EM

TRABAJO: MP2118-838 MUESTRA: DS.31782 CLAVE: Hoja 2 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19-10-2015

Lugar de entrega: Procedencia:

Sondeo 2. Muestra inalerada. Profundidad de 1,50 a 1,87 m.

	RESUMEN DE RESULTA	DOS	
ENSAYO	NORMA	RESULT	ADO
Clasificación Casagrande		SM	
Clasificación AASHTO		A-1-b (0)	
Límites de Atterberg	T		
Límite líquido	UNE 103103: 1994	No)
Límite plástico	UNE 103104: 1993	No)
Índice de plasticidad		No plá	stico
Humedad natural (%)	UNE 103300: 1993	4,3)
Densidad suelo		Húmeda (g/cm³) 1,87	Seca (g/cm³) 1,79
Materia orgánica (%) (Muestra total)	UNE 103 204:1993 y Err:93	0,1	1
Sulfatos solubles (%) (Muestra total)	UNE 103 201:1996 Err:03	0,00	00
Corte Directo CD	UNE- 103401/98		
Cohesion (kg/cm2)		0,5	
Angulo de rozamiento (φ°)		31	
Observaci	ones; Informe anexo de 1 página		
Análisis granulométrico ⁽¹⁾	LINE INSTITUTE 1995	er los resultados de este áginas del informe.	ensayo en las siguien

EPTISA, SERVICIOS DE INGENIERIA, S. L. c/ María Tubau, 8 28050-MADRID

fuencarral@eptisa.com Tef.913 589 077 Fax. 913 589 845 Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31782

CLAVE:

Hoja 3 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

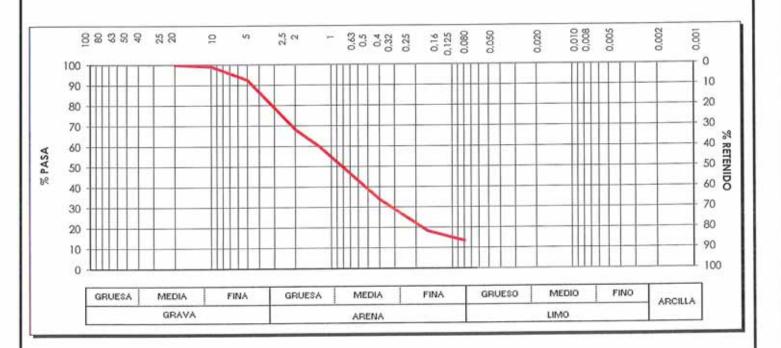
Fecha de recepción:

19-10-2015

Lugar de entrega

Procedencia:

Sondeo 2. Muestra inalerada. Profundidad de 1,50 a 1,87 m.


ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO. (UNE 103 101:1995)

Fecha Inicio ensayo:

21-10-2015

Fecha finalización ensayo:

22-10-2015

Tamices UNE	150	125	100	90	80	63	50	40	25	20	12,5	10	8	6,3	5	4	2,5	2	1,25	0,5	0,4	0,25	0.16	0.125	0,080	0,063
% que pasa										100.0		1,99			92.5			68.2	59,7		33,8		18.3		13.5	

Observaciones:

Trabajo: MP-2118-

LABORATORIO EPTISA

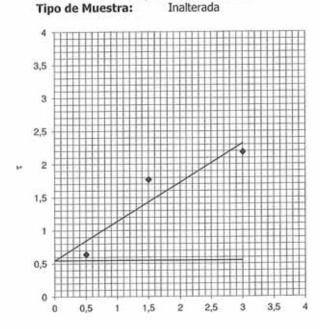
Tef.913 589 077 Fax.913 589 845 c/ María Tubau, 8

28050 - Madrid

DS-31782

Laboratorio habilitado por la Cominidad de Madrid e inscrito en el registro General del CTE como LECCE con N.º MAD-L-032 en las áreas de actuación: GT, VS, PS, EH, EA, EFA, EM.

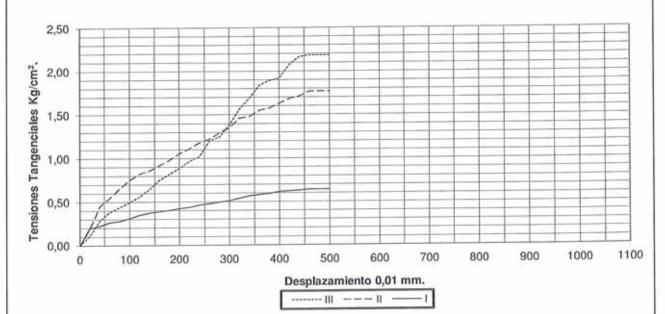
CLA


CLAVE:

Hoja: 1 de 1

ENSAYO DE CORTE DIRECTO (UNE-103401-98)

Tipo de Ensayo: consolidado y con drenaje
Velocidad del Ensayo: 0,048m/m/minuto
Tipo de Muestra: Inalterada


MUESTRA:

Prueba Nº	σ (Kg/cm²)	t (Kg/cm²)
1	0,5	0,64
2	1,5	1,77
3	3,0	2,18
Densidad	% Humedad Inicial	% Humedad Final
1,76	4,5	23,9
1,76	4,7	21,1
1,79	3,5	20,5

C (Kg/cm²) 0,55 φ º 31

α

Obsevaciones:

Madrid, 27-oct-15

DIRECTOR DEL LABORATORIO

Tef.913 589 077 Fax. 913 589 845

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31783

CLAVE:

Hoja 1 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Principe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19-10-2015

Lugar de entrega:

Procedencia:

Sondeo 3. Muestra SPT. Profundidad de 1,50 a 2,10 m.

ENSAYOS SOLICITADOS

Análisis granulométrico. Límites de Atterberg. Límite líquido. Límites de Atterberg. Límite plástico. Contenido en sulfatos. Materia orgánica.

Observaciones:

V. B. ELENA LOPEZ URGOITI Director de laboratorio AM/1/30. a 23/10/2015

JOSE CLAUDIO SERRANO CHECA

Jef€ de Área

Fdo

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

Tef.913 589 077 Fax. 913 589 845 GT, VS, PS, EH, EA, EFA, EM

TRABAJO: MP2118-838 MUESTRA: DS.31783 CLAVE: Hoja 2 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facililada por el peticionario)

Material:

Muestra: Entregada por el solicitante

Fecha de recepción:

19-10-2015

Lugar de entrega:

Procedencia:

Sondeo 3. Muestra SPT. Profundidad de 1,50 a 2,10 m.

	RESUMEN DE RESUL	TADOS
ENSAYO	NORMA	RESULTADO
Clasificación Casagrande		SM
Clasificación AASHTO		A-1-b (0)
Límites de Atterberg	ĺ	
Límite líquido	UNE 103103: 1994	No
Límite plástico	UNE 103104: 1993	No
Índice de plasticidad		No plástico
Materia orgánica (%) (Muestra total)	UNE 103 204:1993 y Err:93	0.26
Sulfatos solubles (%) (Muestra total)	UNE 103 201:1996 Err:03	0,008
Análisis granulométrico ⁽¹⁾	UNE 103101: 1995	Ver los resultados de este ensayo en las siguiente páginas del informe.

Tef.913 589 077 Fax. 913 589 845

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31783

CLAVE:

Hoja 3 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Principe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

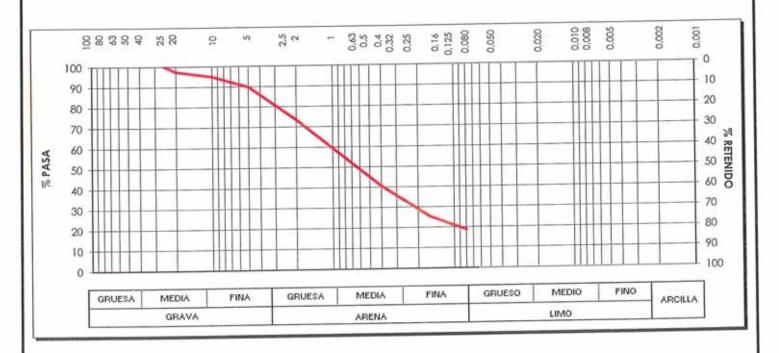
Fecha de recepción:

19-10-2015

Lugar de entrega

Procedencia:

Sondeo 3. Muestra SPT. Profundidad de 1,50 a 2,10 m.


ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO. (UNE 103 101:1995)

Fecha Inicio ensayo:

21-10-2015

Fecha finalización ensayo:

22-10-2015

																							-			
Tamices UNE	150	125	100	90	80	63	50	40	25	20	12,5	10	8	6.3	5	4	2,5	2	1,25	0,5	0.4	0,25	0.16	0,125	0,080	0.063
	100	120	100				10000					95.0			89,8			73.5	63.9		40,5		25,3		18,8	
% que posa									100,0	97,4		93,0			07,0			7 0.0						-		_

Observaciones:

EPTISA, SERVICIOS DE INGENIERIA, S. L. c/ María Tubau, 8 28050-MADRID

fuencarral@eptisa.com Tef.913 589 077 Fax. 913 589 845 Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31784

CLAVE:

Hoja 1 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada par el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19-10-2015

Lugar de entrega:

Procedencia:

Sondeo 3. Muestra inalterada. Profundidad de 2,50 a 2,75 m.

ENSAYOS SOLICITADOS

Análisis granulométrico.

Humedad natural.

Densidades húmeda y seca.

Límites de Atterberg, Límite líquido.

Límites de Atterberg. Límite plástico.

Contenido en sulfatos.

Observaciones:

M/1/20, a 22/10/2015

JOSE CLAUDIO SERRANO CHECA

Jefé de Área

Fdo.

Director de laboratorio

V.º B.º: ELENA LOPEZ URGOITI

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

Tef.913 589 077 Fax, 913 589 845 GT, VS, PS, EH, EA, EFA, EM

TRABAJO: MP2118-838 MUESTRA: DS.31784 CLAVE: Hoja 2 de 3

Peticionario: INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección: C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra: EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra: Entregada por el solicitante Fecha de recepción: 19-10-2015

Lugar de entrega:

Procedencia: Sondeo 3. Muestra inalterada. Profundidad de 2,50 a 2,75 m.

	RESUMEN DE RESULT	ADOS								
ENSAYO	NORMA	RESULT	ADO							
Clasificación Casagrande		SW-SM								
Clasificación AASHTO		A-1-b (0)								
Límites de Atterberg	1									
Límite líquido	UNE 103103: 1994	No)							
Límite plástico	UNE 103104: 1993	No)							
Índice de plasticidad		No plástico								
Humedad natural (%)	UNE 103300: 1993	4,4	1							
Densidad suelo		Húmeda (g/cm³) 2,03	Seca (g/cm³) 1,94							
Sulfatos solubles (%) (Muestra total)	UNE 103 201:1996 Err:03	0,00	00							
Análisis granulométrico ⁽¹⁾	1 1101- 1031011- 1995	Ver los resultados de este páginas del informe.	ensayo en las siguie							

Tef.913 589 077 Fax. 913 589 845

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31784

CLAVE:

Hoja 3 de 3

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

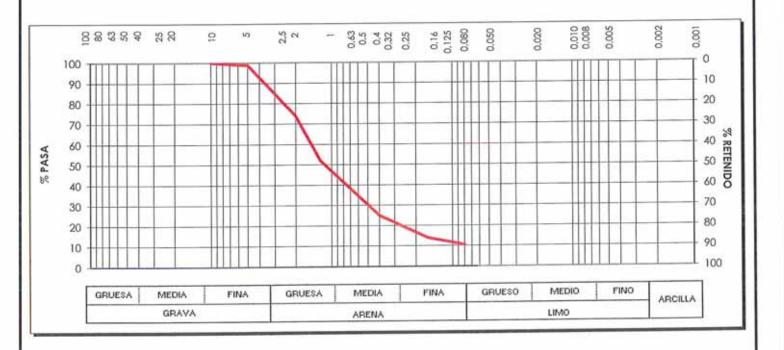
Fecha de recepción:

19-10-2015

Lugar de entrega

Procedencia:

Sondeo 3. Muestra inalterada. Profundidad de 2,50 a 2,75 m.


ANÁLISIS GRANULOMÉTRICO DE SUELOS POR TAMIZADO. (UNE 103 101:1995)

Fecha Inicio ensayo:

21-10-2015

Fecha finalización ensayo:

22-10-2015

																		_			_	_	_			
Tomices UNE	150	125	100	90	80	63	50	40	25	20	12,5	10	8	6,3	5	4	2,5	2	1,25	0,5	0,4	0,25	0.16	0.125	0,080	0,063
			-	-	-	-		-					_	-			-		11 11 11 11		1 1 1 1 1 1 1 1 1 1 1 1		120		10.5	
% que pasa												100,0			98,8			73.8	52,0		25.0		13.9		10.3	

Observaciones:

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

Tef.913 589 077 Fax. 913 589 845 MP2118-838 DS.31785 Hoja 1 de 2 TRABAJO: MUESTRA: CLAVE:

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Principe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19-10-2015

Lugar de entrega:

Procedencia:

Sondeo 1. Muestra de roca. Profundidad de 2,30 a 2,60 m.

ENSAYOS SOLICITADOS

Compresión simple de rocas.

Observaciones:

V.º B.º: ELENA LOPEZ URGOITI Director de laboratorio

26/10/2015

JOSE CLAUDIO SERRANO CHECA

Jefc de Área

Fdo.

Tef.913 589 077 Fax. 913 589 845

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31785

CLAVE:

Hoja 2 de 2

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19/10/2015

Lugar de entrega

Procedencia:

Sondeo 1. Muestra de roca. Profundidad de 2,30 a 2,60 m.

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN SIMPLE DE PROBETAS DE ROCA

(UNE 22-950-90 Parte 1)

Fecha Inicio ensayo:

21/10/2015

Fecha finalización ensayo:

23/10/2015

Diámetro	mm	83,0
Altura:	mm	204,5
Relación altura/diámetro		2,5
Humedad	%	0,4
Densidad húmeda	g/cm ³	2,6
Densidad seca	g/cm ³	2,6
Humedad de la probeta en el momento de ensayo	o:	Seca al aire
Orientación del eje carga s/ planos de estratificaci	ón °	90
Resistencia compresión	MPa	71,7
Resistencia compresión	kp/cm²	730,7

Croquis de la rotura de la probeta

Descripción de la probeta antes de ensayo: Testigo de roca granitica.

Descripción de la rotura de la probeta:

Observaciones:

EPTISA, SERVICIOS DE INGENIERIA, S. L. c/ María Tubau, 8 28050-MADRID

fuencarral@eptisa.com Tef.913 589 077 Fax. 913 589 845 Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO: MP2118-838 MUESTRA: DS.31786 CLAVE: Hoja 1 de 2

Peticionario: INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección: C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra: EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra: Entregada por el solicitante Fecha de recepción: 19-10-2015

Lugar de entrega:

Procedencia: Sondeo 2, Muestra de roca, Profundidad de 3,70 a 3,90 m.

ENSAYOS SOLICITADOS

Compresión simple de rocas.

Observaciones:

Myij. D. a 26/10/2015

JOSE CLAUDIO SERRANO CHECA

Jefé de Área

Fdo.

Director de laboratorio

V.º B.º: ELENA LOPEZ UKGOITI

Tef.913 589 077 Fax. 913 589 845

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

TRABAJO:

MP2118-838

MUESTRA:

DS.31786

CLAVE:

Hoja 2 de 2

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL. S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

(Facilitada por el peticionario)

Material:

Muestra:

Entregada por el solicitante

Fecha de recepción:

19/10/2015

Lugar de entrega

Procedencia:

Sondeo 2. Muestra de roca, Profundidad de 3,70 a 3,90 m.

DETERMINACIÓN DE LA RESISTENCIA A COMPRESIÓN SIMPLE DE PROBETAS DE ROCA

(UNE 22-950-90 Parte 1)

Fecha Inicio ensayo:

22/10/2015

Fecha finalización ensayo:

23/10/2015

Diámetro	mm	71,0
Altura:	mm	203,7
Relación altura/diámetro		2,9
Humedad	%	0,2
Densidad húmeda	g/cm ³	2,6
Densidad seca	g/cm ³	2,6
Humedad de la probeta en el momento de	e ensayo:	Seca al aire
Orientación del eje carga s/ planos de estre	atificación °	90
Resistencia compresión	MPa	61,3
Resistencia compresión	kp/cm ²	625,2

Croquis de la rotura de la probeta

Descripción de la probeta antes de ensayo:

Testigo de roca granitica.

Descripción de la rotura de la probeta:

Observaciones:

EPTISA, SERVICIOS DE INGENIERIA, S. L.

c/ María Tubau, 8 28050-MADRID

fuencarral@eptisa.com Tef.913 589 077 Fax. 913 589 845 Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

Hoja 1 de 2

TRABAJO: MP2118-838 MUESTRA: DQ.1589 CLAVE:

Peticionario:

INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A.

Dirección:

C/ Príncipe de Vergara, 55, bajo 28006 MADRID (MADRID)

Obra:

EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA.

Material:

Muestra:

Tomada por el laboratorio

Fecha de toma:

Lugar de toma:

Procedencia:

Sondeo 1

ENSAYOS SOLICITADOS

pH en aguas.

Residuo seco a 110º en aguas.

Contenido en sulfatos en aguas.

Contenido de magnesio en aguas.

Dióxido de carbono libre CO2 en aguas.

Contenido de amonio NH4 en aguas.

Observaciones:

M/1/0, a 21/10/2015

JOSE CLAUDIO SERRANO CHECA

Jefé de Área

Fdo.

Director de laboratorio

V.º B.º: ELENA LOPEZ URGOITI

eptisa, servicios de ingenieria, s. L. c/ María Tubau, 8 28050-MADRID fuencarral@eptisa.com

Laboratorio habilitado por la Comunidad de Madrid e inscrito en el Registro General del CTE como LECCE con N.º MAD-L-032 en la áreas de actuación: GT, VS, PS, EH, EA, EFA, EM

Tef.913 589 077 Fax. 913 589 845 GT, VS, PS, EH, EA, EFA, EM Hoja 2 de 2 MP2118-838 DQ.1589 CLAVE: TRABAJO: MUESTRA: INSTITUTO TECNICO DE INSPECCION Y CONTROL, S.A. Peticionario: C/ Principe de Vergara, 55, bajo 28006 MADRID (MADRID) Dirección: EESTUDIO GEOTECNICO AMPLIACIÓN E.D.A.R. VALDEMAQUEDA. Obra: Material: Fecha de toma: Tomada por el laboratorio Muestra: Lugar de toma: Procedencia: Sondeo 1 **RESUMEN DE RESULTADOS** RESULTADO **ENSAYO** NORMA Valor de pH T.ª muestra (°C) Determinación de pH UNE 83952: 2008 23 7.1 255 Residuo seco a 110° C (mg/l) UNE 83957: 2008 29 UNE 83956: 2008 Contenido en sulfatos (mg/l) 4 UNE 83955: 2008 Contenido de magnesio (mg/l) 0 CO₂muestras: Dióxido de carbono agresivo (CO2) (mg/l) UNE-EN 13577: 2008 0 CO₂media: 0 UNE 83954: 2008 Contenido de amonio (NH4+) (mg/l) No agresivo AGRESIVIDAD AL HORMIGÓN

ANEJO Nº 4.- TRAMITACIÓN AMBIENTAL Y ARQUEOLÓGICA

ANEJO Nº 4.- TRAMITACIÓN AMBIENTAL Y ARQUEOLÓGICA INDICE

	,	
4	INTRODUCACION	
1 _	INTECNICATON	1
1	INTRODUCCION	

1.-INTRODUCCIÓN

Según el informe de fecha 13 de junio de 2016 de la Dirección General del Medio Ambiente de la Comunidad de Madrid, no es necesario que el proyecto de "Actuaciones de mejora en la EDAR de Valdemaqueda y acometida eléctrica a la EDAR" sea sometido a tramitación ambiental por la Ley 21/2013 de 9 de diciembre de evaluación ambiental, siempre y cuando se cuente con informe favorable de la Dirección General de Patrimonio Cultural.

Se incluyen a continuación tanto el mencionado informe de la Dirección General del Medio Ambiente, como el informe favorable de la Dirección General de Patrimonio Cultural.

Previamente se incluye la consulta sobre la necesidad de tramitación ambiental del proyecto, efectuada a la Consejería de Medio Ambiente, Administración Local y Ordenación del Territorio con fecha 13 de octubre de 2015, escrito al que responden los dos citados informes.

Igualmente, se incluye la consulta realizada con fecha 19 de Enero de 2016 a la Dirección General de Patrimonio Cultural solicitando informe sobre el Proyecto Constructivo de acometida eléctrica y mejoras en la EDAR Valdemaqueda (T.M. Valdemaqueda), para que en el caso de que consideren la zona propuesta de potencial interés desde el punto de vista arqueológico, establezcan las medidas que consideren oportunas.

CONSULTA TRAMITACIÓN AMBIENTAL

: Ingenieria : Proyectos eutilización

CONSEJERÍA DE MEDIO AMBIENTE, ADMINISTRACIÓN LOCAL Y ORDENACIÓN DEL TERRITORIO Subdirección General de Impacto Ambiental C/ Alcala, 16 28014 - Madrid

13 OCT. 2015

SALIDANO 185-15

AREA PROYECTOS DE SANEAMENTO Y REUTE L'ACKON

ASUNTO: CONSULTA SOBRE LA NECESIDAD DE TRAMITACIÓN AMBIENTAL DEL PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA A LA EDAR DE VALDEMAQUEDA Y ACTUACIONES DE MEJORA, T.M. VALDEMAQUEDA".

Madrid, 13 de octubre de 2015

La EDAR de Valdemaqueda, situada en el T.M de Valdemaqueda, fue diseñada en el año 1.994, para una población de 4.000 h.e y un caudal medio de 800 m³/h, el cual no será modificado. Toda la zona se encuentra dentro de la zona de Red Natura 2.000 Zepa (encinares de los ríos Alberche y Cófio) y del área protegida LIC/ ZEP (cuencas de los ríos Alberche y Cofío).

Debido a problemas operativos de proceso, se ve necesario realizar las siguientes modificaciones:

- 1. Es necesario dotar a la instalación de acometida eléctrica, para ello se necesita llevar una línea subterránea en media tensión de 20 k desde el centro de distribución situado en la calle Naranjo en el pueblo de Valdemaqueda (punto indicado por la compañía eléctrica IBERDROLA) hasta la EDAR. Esta línea eléctrica tiene una longitud total aproximada de unos 1200 metros, de los cuales transcurrirían unos 400 metros por las calles del pueblo y los 800 metros restantes irían por el camino de avenida del puente romano, que da acceso a la EDAR, tal y como se puede observar en el Anexo I. Hay que tener en cuenta que para realizar la acometida eléctrica tan sólo será necesario realizar una zanja de 1 m de profundidad y 1 m de ancho
- 2. Siguiendo indicaciones de la compañía eléctrica, a unos 400 m aproximadamente del punto de entronque se situará un centro de seccionamiento (C.S), cuya función es la de unir la red eléctrica de compañía con la instalación particular a la que está dando servicio. Cabría la posibilidad de que este centro fuera enterrado, para minimizar su impacto, salvaguardando el riesgo de inundabilidad y sobresaliendo del suelo no más de 50 cm, en caso de que no fuera viable enterrarlo, la altura sería de 2.8 m.

Las dimensiones aproximadas del C.S serían 5x2.5 m, hay que incluir una acera alrededor del C.S de 1.5 m.

En el anexo II, se muestra la posible ubicación del C.S.

- 3. Dentro de la EDAR, se construirá un nuevo sistema de depuración mediante aereación prolongada, consistente en los siguientes elementos:
 - Pozo de gruesos.
 - Pretramiento

- Dos reactores biológicos de aieración prolongada tipo carrusel.
- Dos decantadores secundarios
- Espesador de fangos
- Depósito de almacenamiento de fangos.

En ningún caso, el proyecto precisará afección a una parcela igual o superior a 10 ha, por lo que no supondría un cambio de uso del suelo en una superficie igual o superior a 10 ha como marca la legislación vigente.

Finalmente, se verifica que el proyecto no se encuentra en zona de monte preservado ni en embalses y humedales protegidos.

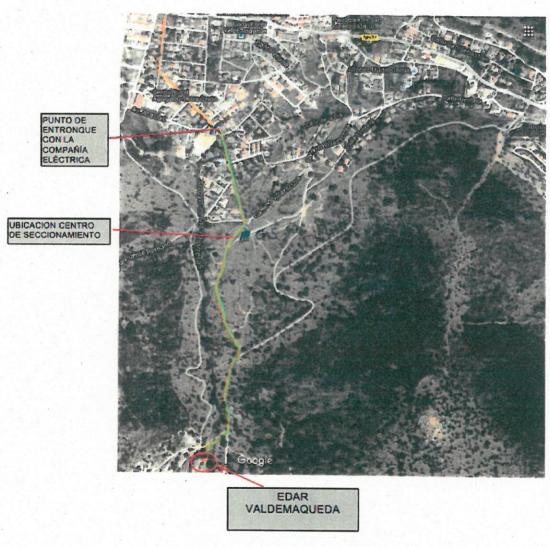
Teniendo en cuenta que en el ámbito de la Comunidad de Madrid, a la espera de que se apruebe una nueva legislación autonómica en materia de evaluación ambiental en desarrollo de la normativa básica ambiental, se aplicará la Ley 21/2013, de 9 de diciembre, junto con la disposición transitoria primera de la Ley 4/2014, de 22 de diciembre, de Medidas Fiscales y Administrativas, el régimen transitorio en materia de evaluación ambiental. Como consecuencia de lo anteriormente descrito, las modificaciones proyectadas no se estiman que puedan causar efectos significativos a espacios de la Red Natura 2.000.

No obstante, en virtud de lo especificado por dicha Ley en cuanto a la competencia del órgano ambiental, se solicita su pronunciamiento sobre la existencia de efectos significativos sobre el medio ambiente con el fin de proceder al respecto.

Un saludo,

RUTH ORTEGA COSÍO Técnico Área Proyectos de Saneamiento y Reutilización. Ganal de Isabel II servicen Brilliano Perunia

MARIA CASANOVA SANJUAN Jefa Área Proyectos de Saneamiento y Reutilización.

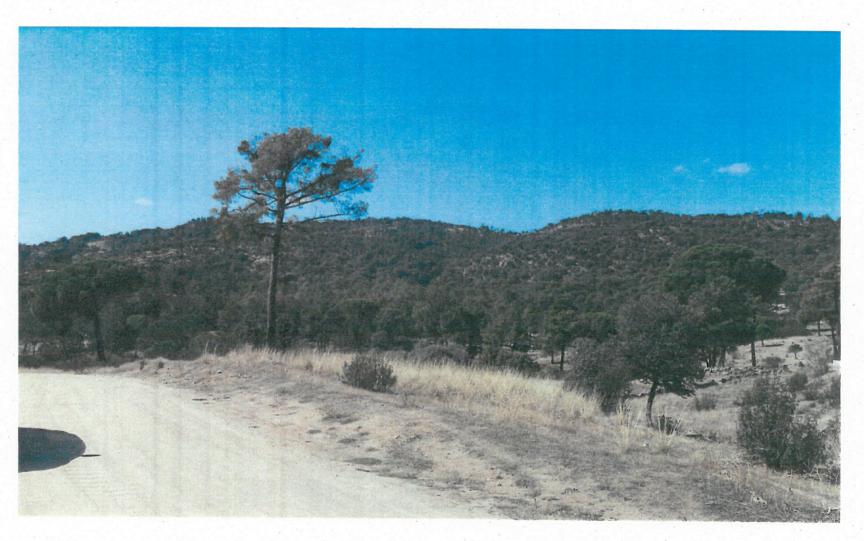

Documentación adjunta:

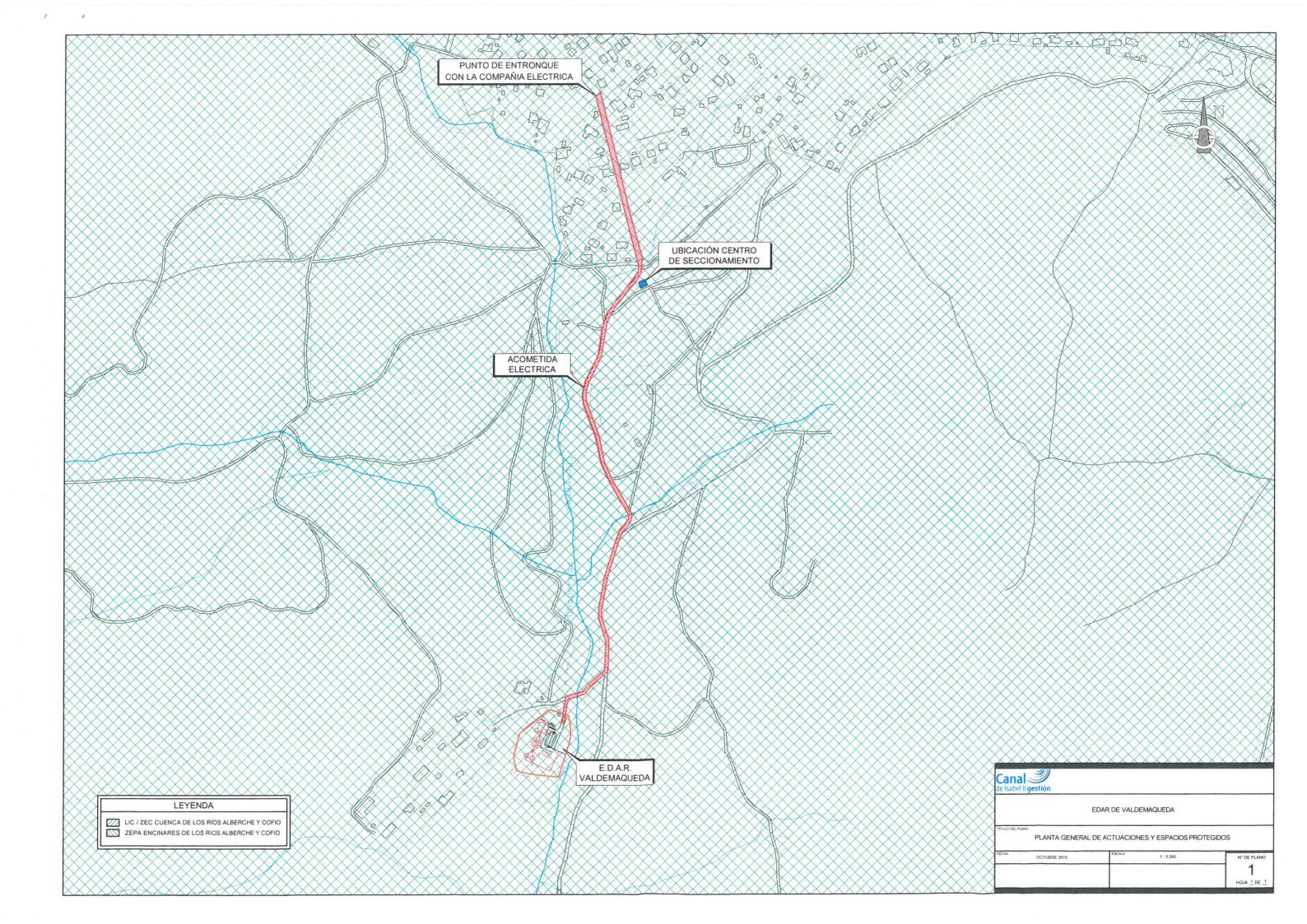
- 1. Planta general, plano de actuaciones. Espacios protegidos.
- 2. Planta general, plano de actuaciones. Espacios protegidos. Ortofoto.
- 3. Plano de actuaciones en la EDAR.

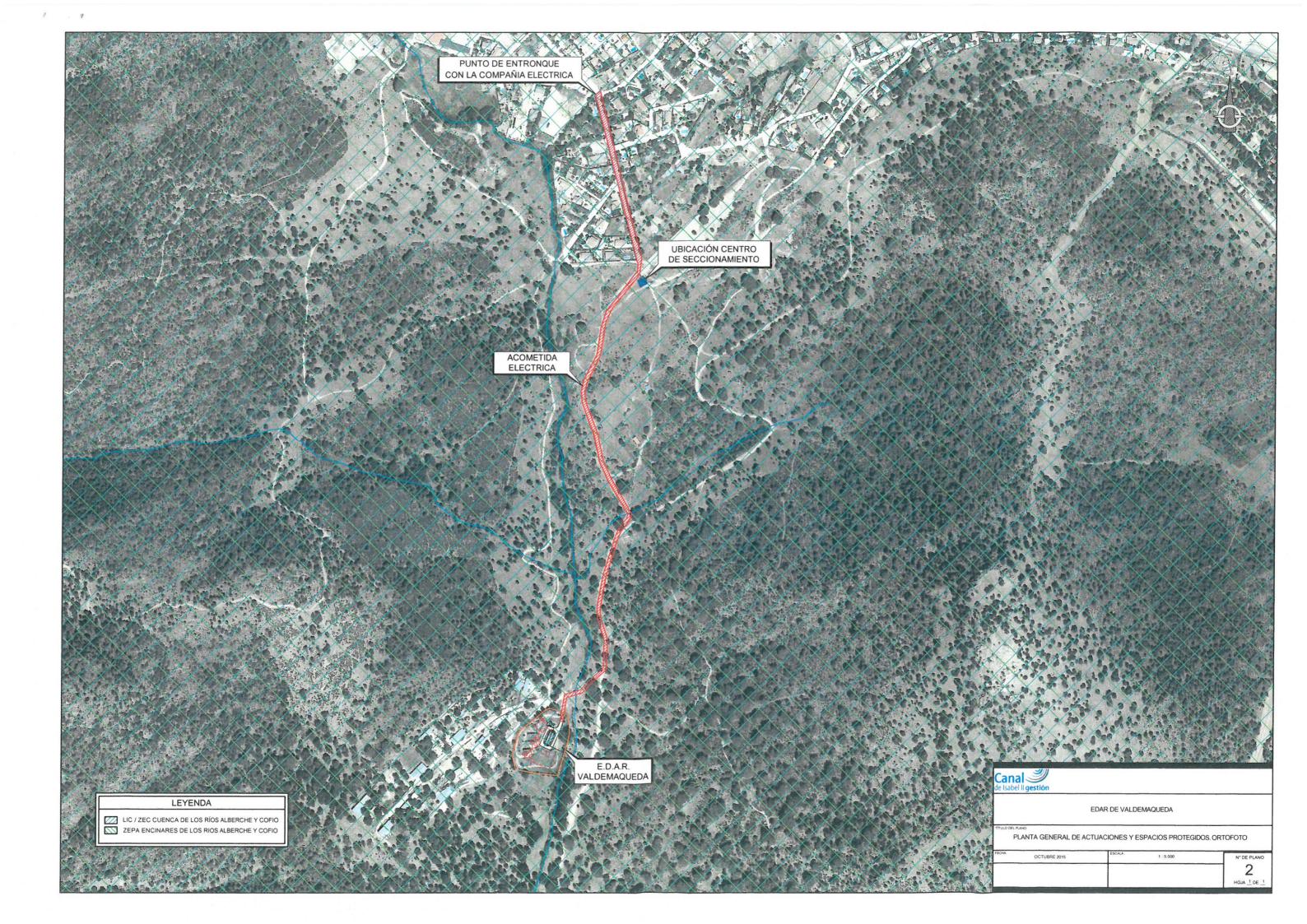
REGISTRO DE SALIDA 201500121555 U17200 13/10/2015 13:39:45

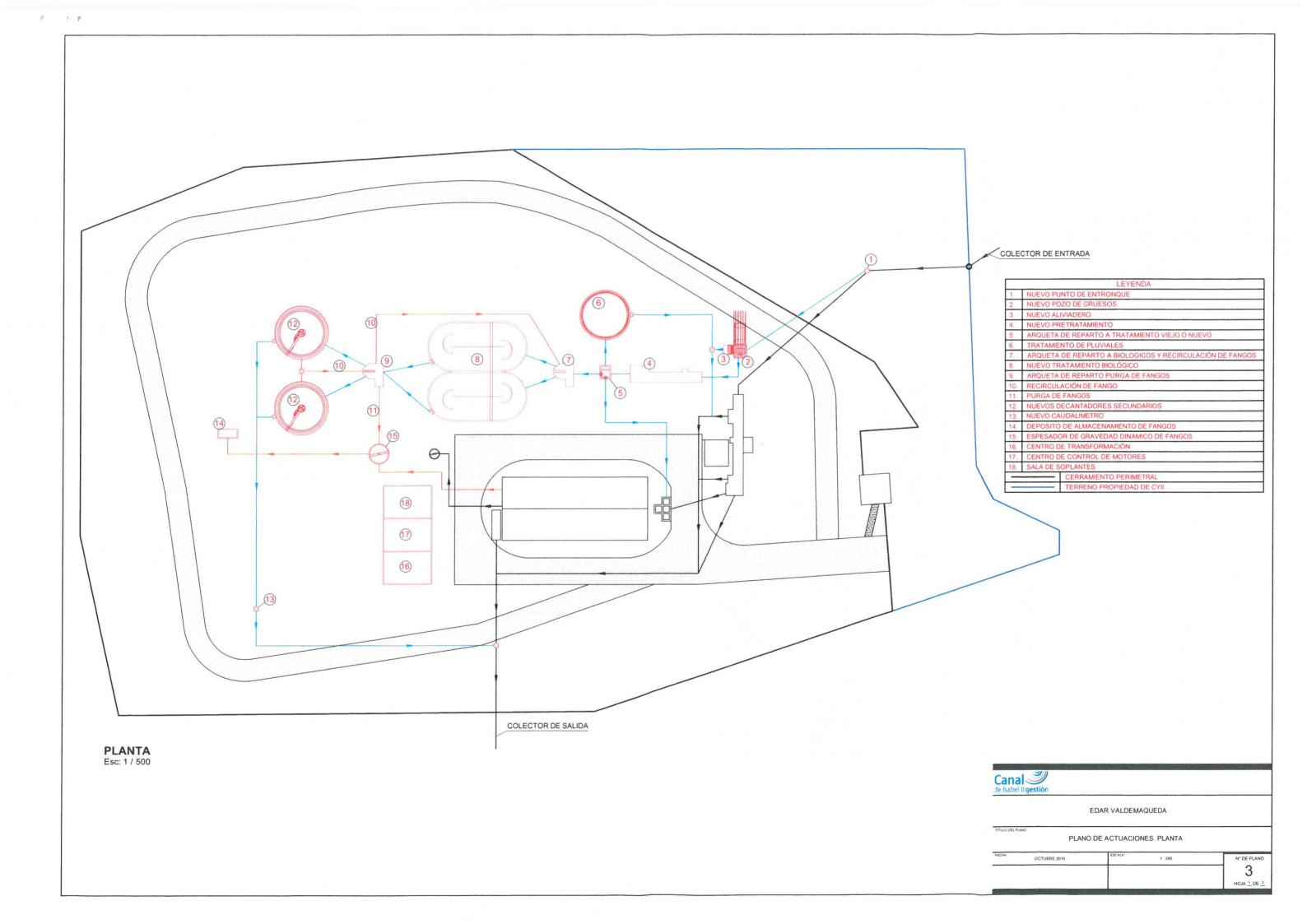
Anexo I: Plano trazado de la acometida eléctrica a la EDAR

VDQ01CAR01

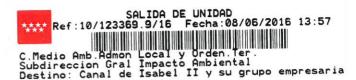








Anexo II: Foto de posible ubicación del Centro de Seccionamiento.



INFORME DE LA DIRECCIÓN GENERAL DEL MEDIO NATURAL

PROYECTOS DE SANEAMIENTO

REGISTRO DE Entrada 201600114098 U17200 13/06/2016 11:07:23 Dirección General del Medio Ambiente

Ref. SEA 1.19/15

Con relación al escrito de referencia de salida del Registro General de esta Consejería Nº 10/085083.9/16, de fecha 28 de abril de 2016, relativo a la aplicación de la normativa de evaluación de impacto ambiental al proyecto de "Actuaciones de mejora en la EDAR de Valdemaqueda y acometida eléctrica a la EDAR", promovido por CANAL DE ISABEL II GESTIÓN, en el término municipal de Valdemaqueda, procede remitir copia del informe emitido por la Subdirección General de Conservación del Medio Natural con fecha 3 de mayo de 2016, que sustituye en su totalidad al emitido por dicha Subdirección General de fecha 1 de marzo de 2016.

En todo caso, a la vista del nuevo informe favorable, se reitera que el proyecto de referencia, con las características expuestas en la solicitud presentada y siempre que se disponga de informe favorable de la Dirección General de Patrimonio Cultural, no es necesario que sea sometido a ninguno de los procedimientos de evaluación de impacto ambiental establecidos en la *Ley* 21/2013, de 9 de diciembre, de evaluación ambiental.

El presente informe se emite, única y exclusivamente, a efectos de lo establecido en el artículo 7 de la Ley 21/2013, de 9 de diciembre, de evaluación ambiental y en la Disposición transitoria primera de la Ley 4/2014, de 22 de diciembre, de Medidas Fiscales y Administrativas y se formula sin perjuicio de los informes, autorizaciones o licencias de los distintos órganos competentes en el ejercicio de sus respectivas atribuciones.

Lo que se comunica para su conocimiento y a los efectos oportunos.

Madrid, 1 de junio de 2016.

LA JEFE DEL ÁREA DE EVALUACIÓN AMBIENTAL,

Fdo.: Laura Castro Noval.

CANAL DE ISABEL II GESTIÓN C/ Santa Engracia, 125 28003 Madrid

Ref: SHL/mbm 315/16(EVA160128)

FECHA: 10/05/2016

NOTA INTERIOR

DE: SUBDIRECCIÓN GENERAL DE CONSERVACIÓN DEL MEDIO NATURAL

A: SUBDIRECCIÓN GENERAL DE IMPACTO AMBIENTAL (Área de Evaluación Ambiental)

ASUNTO: Expte SEA 1.19/15

Modificación de informe

Actividad: Actuaciones de mejora en la EDAR de Valdemaqueda y

acometida eléctrica a la EDAR

Promotor: CANAL DE ISABEL II GESTIÓN S.A.

T.M. Valdemaqueda

En relación con el asunto de referencia, con fecha 17/03/2016 se remitió a esa Subdirección General, informe del Área de Conservación de Montes. No obstante, se traslada nuevo informe de dicho Área de fecha 3 de mayo de 2016, que sustituye en su totalidad al anteriormente remitido.

La Jefa de Servicio de Informes Técnicos Medioambientales

El Subdirector General de Conservación del Medio Natural

Felipe Ruza Rodríguez

Sonia Hidalgo López

ÁREA DE EVALUACIÓN AMBIENTAL

FECHA

1 8 MAYO 2016

E. No

711

INFORME TÉCNICO

ASUNTO:

N.º/referencia: 45/16 (EVA 160016)

Expte.: SEA 1.19/15

Actividad: Actuaciones de mejora en la EDAR de Valdemaqueda y acometida eléctrica a la

EDAR

Promotor: Canal de Isabel II Gestión, S. A.

Término municipal: Valdemaqueda

En relación a la solicitud recibida del Servicio de Informes Técnicos Medioambientales con referencia de salida 10/006891.9/16 y fecha 19 de enero de 2016, para que se informe en el ámbito de gestión del Área de Conservación de Montes sobre las actuaciones de mejora y acometida eléctrica a la EDAR de Valdemaqueda, se informa lo siguiente:

1. Procedimiento:

De acuerdo con la documentación recibida, se encuentra en tramitación el procedimiento de solicitud de informe técnico para la autorización de las actuaciones de mejora y acometida eléctrica a la EDAR de Valdemaqueda, en su propio término municipal

2. Objeto del proyecto:

De acuerdo con lo expuesto en el documento recibido junto con la solicitud, las actuaciones previstas son las siguientes:

- Mejora de la EDAR mediante la construcción de un nuevo sistema de depuración:
 - Elementos: pozo de gruesos, pretratamiento, dos reactores biológicos, dos decantadores secundarios, espesador de fangos, depósito de almacenamiento de fangos.
 - o Las instalaciones se ubicarán en la parcela destinada actualmente a la depuradora, no suponiendo una nueva ocupación de suelo.
- Acometida eléctrica:
 - Línea eléctrica subterránea de 1.200 m (400 m por las calles del pueblo y 800 m por pista forestal).
 - o Zanja de 1 m de ancho y 1 m de profundidad
 - o Instalación de un centro de seccionamiento al sur del pueblo con unas dimensiones de 5 x 2,5 m con una acera perimetral de 1,5 m (superficie total: 44 m²)

3. Afección a montes y espacios protegidos:

La zona en la que se van a realizar las actuaciones propuestas pertenecen a espacios Red Natura 2000, concretamente:

- ZEPA: ES0000056 Encinares de río Alberche y río Cofio
- LIC: ES3110007 Cuencas de los ríos Alberche y Cofio

Además, la ubicación que se propone para la instalación del Centro de Seccionamiento es monte preservado al ser terreno forestal y ZEPA.

4. Legislación aplicable:

• Ley 16/1995, de 4 de mayo, Forestal y de Protección de la Naturaleza de la Comunidad de Madrid.

A pesar de que las actuaciones concretas propuestas no se asientan sobre terreno forestal, al tratarse de acondicionamientos de infraestructuras preexistentes se tendrá en cuenta la citada Ley por la posible afección indirecta al ecosistema que rodea a la zona de actuación.

El art. 2 de la Ley 16/1995 establece que: Son objetivos de la presente Ley: proteger, conservar y, en su caso, restaurar la cubierta vegetal, el suelo, los recursos hídricos y la fauna y flora de los ecosistemas forestales; preservar la diversidad genética, la variedad, singularidad y belleza de los ecosistemas naturales y del paisaje, y en especial defender los ecosistemas forestales contra incendios, plagas y uso indebido; fomentar la ampliación de la superficie arbolada de Madrid y evitar su disminución; regular las actividades recreativas, deportivas, educativas y culturales en los montes, en concordancia con la protección de los mismos y de forma compatible con sus funciones.

En el art. 34, del Título V. Protección y defensa de los ecosistemas forestales, de la Ley 16/1995, se establece que Las administraciones públicas competentes por razones de titularidad, gestión o intervención administrativa orientarán sus acciones a lograr la protección, conservación, restauración y mejora de los montes o terrenos forestales, cualquiera que sea su titularidad o régimen jurídico.

La citada Ley establece en su artículo 43. Compensaciones, lo siguiente: Sin perjuicio de lo dispuesto en la legislación urbanística y sectorial, toda disminución de suelo forestal por actuaciones urbanísticas y sectoriales deberá ser compensada a cargo de su promotor mediante la reforestación en una superficie no inferior al doble de la ocupada.

• Ley 42/2007, del Patrimonio Natural y la Biodiversidad.

Artículo 46. Medidas de conservación de la Red Natura 2000. Su apartado 3 establece: Los órganos competentes, en el marco de los procedimientos previstos en la legislación d evaluación ambiental, deberán adoptar las medidas necesarias para evitar deterioro, la contaminación y la fragmentación y las perturbaciones que afecten a las especies fuera de la Red Natura 2000, en la medida que estos fenómenos tengan un efecto significativo sobre el estado de conservación de dichos hábitats y especies.

Su apartado 4 señala que Cualquier plan, programa o proyecto que, sin tener relación directa con la gestión del lugar o sin ser necesario para la misma, pueda afectar de forma apreciable a los citados lugares, ya sea individualmente o en combinación con otros planes o proyectos, se someterá a una adecuada evaluación de sus repercusiones en el especio, que se realizará de acuerdo con las normas que sean de aplicación, de acuerdo con lo establecido en la legislación básica estatal y en las normas adicionales de protección dictadas por las comunidades autónomas, teniendo en cuenta los objetivos de conservación de dicho espacio. A la vista de las conclusiones de la evaluación de las repercusiones en el espacio y supeditado a lo dispuesto en el apartado 5 (razones imperiosas de interés público de primer orden), los órganos competentes para aprobar o autorizar los planes, programas o proyectos solo podrán manifestar su conformidad con los mismos tras haberse asegurado de que no causará perjuicio a la integridad del espacio en cuestión y, si procede, tras haberlo sometido a información pública. Los criterios para la determinación de la existencia de perjuicio a la integridad del espacio serán fijados mediante orden del Ministerio de Agricultura, Alimentación y Medio Ambiente, oída la Conferencia Sectorial de Medio Ambiente.

5. Consideraciones al documento presentado y conclusiones:

A la vista del proyecto presentado, y de acuerdo con todo lo indicado con anterioridad, se informa lo siguiente:

La actividad presentada y previamente descrita consiste en la solicitud de informe para autorización para las actuaciones de mejora y acometida eléctrica a la EDAR de Valdemaqueda.

Toda la zona de actuación está catalogada como Espacio Red Natura 2000, concretamente ZEPA y LIC.

A tenor de todo lo anteriormente descrito se estima que el proyecto no supone transformaciones ecológicas negativas, asimismo, se considera que la realización del proyecto no produce una afección apreciable, directa o indirectamente, al precitado espacio protegido de la Red Natura 2000. Del mismo modo, no se considera que la actuación pueda tener efectos adversos significativos sobre Montes de Régimen Especial, así como zonas húmedas y embalses protegidos

Por todo ello, se informa favorablemente a la solicitud recibida.

Por todo ello, se informa favorablemente a la solicitud recibida. Y se indica que en cuanto a las medidas correctoras y compensatorias en lo referente a la disminución de suelo forestal que deben cumplirse según marca la Ley 16/1995 (artículo 43), en este caso no se consideran necesarias, puesto que en todo momento se pasa por caminos preexistentes o suelo urbano.

Este informe se refiere exclusivamente al ámbito de gestión del Área de Conservación de Montes, no eximiendo al promotor de obtener los permisos o autorizaciones que legalmente se requieran en función de la materia (Administraciones de ámbito local, autonómico o nacional, así como de los propietarios privados que pudieren verse afectados).

Este informe es independiente de cualquier otro necesario en función de la materia.

Lo que se comunica para su conocimiento y efectos oportunos.

Madrid, 3 de mayo de 2016

EL JEFE DE ÁREA DE CONSERVACIÓN DE MONTES

Fdo.- Antonio L. Sanjuán Bericat

CONFORME EL SUBDIRECTOR GENERAL DE CONSERVACIÓN DELA MEDIO NATURAL

Fdo.- Felipe Ruza Rodríguez

CONSULTA TRAMITACIÓN ARQUEOLÓGICA

CONSEJERIA DE PRESIDENCIA, JUSTICIA Y PORTAVOCIA DEL GOBIERNO

Dirección General de Patrimonio Cultural C/ Arenal, 18 28013-Madrid

Madrid, 19 de enero de 2016

ASUNTO: SOLICITUD DE HOJA INFORMATIVA. ACOMETIDA ELÉCTRICA Y MEJORAS EN LA EDAR VALDEMAQUEDA. (T.M VALDEMAQUEDA)

En relación al "Proyecto Constructivo acometida eléctrica y mejoras en la EDAR Valdemaqueda (T.M. Valdemaqueda)", se ruega nos remitan la Hoja Informativa correspondiente, en el caso de que consideren la zona propuesta de potencial interés desde el punto de vista arqueológico.

A modo aclaratorio sobre la actuación que se prevé llevar a cabo, se indica que:

Antecedentes

La EDAR Valdemaqueda dispone únicamente de paneles solares para el suministro de energía eléctrica, en un futuro próximo la planta depuradora se quiere ampliar para incrementar su capacidad de tratamiento y mejorar la calidad de su vertido, para ello es necesario dotar a la instalación de una nueva conducción de acometida eléctrica.

Solución propuesta

A continuación se exponen los principales puntos a modificar.

- Nueva acometida eléctrica que parte del punto de enganche indicado por la compañía eléctrica suministradora y con finalización en la EDAR. La línea consta de una longitud aproxima de 1.200 metros, de los cuales 400 metros transcurren por calles municipales y unos 800 metros por el camino de acceso a la EDAR.
- Ampliación de la EDAR consistente en un nuevo pretratamiento, dos reactores biológicos de aireación prolongada tipo carrusel, dos decantadores secundarios, un decantador para

CERT ISO 14001 TOVIncintand*
CERT
ISO 9001

tratamiento de pluviales, un espesador de gravedad, un depósito de almacenamiento de fangos y un edificio para ubicación de centro de transformación, equipamiento y sala de control.

En el CD adjunto se ha definido de manera gráfica la nueva configuración propuesta. Se incluye el archivo en formato .dwg en coordenadas del sistema ED50.

Al margen de la contestación oficial a este escrito, se ruega remitan también la información solicitada a la siguiente dirección de correo electrónico: rcosio@canalgestion.es, teléfono 915451000 ext 3155.

Atentamente,

Fdo.: María Casanova Sanjuán Jefa Área Proyectos de Saneamiento y Reutilización

INFORME DE LA DIRECCIÓN GENERAL DE PATRIMONIO CULTURAL

REGISTRO DE Entrada 201600105151 U17200 29/02/2016 13:58:32 REGISTRO DE SALIDA Ref:03/067461.9/16 Fecha:24/02/2016 10:23

Cons. Presidencia, Ji Reg.Aux.Presid.,Just Destino: Canal de Isa

28003 Madrid

Canal de Isabel II Gestión, SA Dirección de Innovación e Ingeniería Santa Engracia, 125

> Canal 3 de Isabel II cestión

N° EXPTE.: N° REG.:

RES/0034/2016 03/019248.9/16

TIPO:

Informe

ASUNTO:

Acometida eléctrica y mejoras en la EDAR Valdemaqueda

INTERESADO: Canal de Isabel II Gestión, SA (Santa Engracia, 125, 28003 Madrid)

MUNICIPIO:

Valdemaqueda

2 9 FEB. 2016

ENTRADA Nº ÁREA PROYECTOS DE SANEAMIENTO Y RESITILIZACIÓN

INFORME

Con fecha 21 de enero de 2016, Canal de Isabel II Gestión, SA entrega en la Dirección General de Patrimonio Cultural el Solicitud de Hoja Informativa relativo al proyecto de Acometida eléctrica y mejoras en la EDAR Valdemaqueda, en el término municipal de Valdemaqueda.

En relación con la consulta formulada, analizado el lugar de ubicación, las bases de datos y la documentación que obra en esta Dirección General de Patrimonio Cultural, se comprueba que el referido proyecto no tiene, presumiblemente, afección sobre el patrimonio histórico.

Por todo ello, se estima que no existe inconveniente, desde el punto de vista del patrimonio histórico, para la realización de la actuación proyectada.

En cualquier caso, en aplicación del el artículo 31 de la Ley 3/2013, de 18 de junio, de Patrimonio Histórico de la Comunidad de Madrid, si durante el transcurso de las obras aparecieran restos de valor histórico y arqueológico, deberá comunicarse en el plazo de tres días naturales a la Dirección General de Patrimonio Cultural de la Comunidad de Madrid.

> En Madrid, a 22 de febrero de 2016, EL JEFE DE ÁREA DE PROTECCIÓN

Fdo.: Miguel Ángel García Valero

V° B°, EL SUBDIRECTOR GENERAL DE PROTECCIÓN Y CONSERVACIÓN

Fdo.: Luis Lafuente Batanero

ANEJO Nº 5.- CÁLCULOS ESTRUCTURALES

ANEJO № 5.- CÁLCULOS ESTRUCTURALES INDICE

1	OBJE	то		1
2	DATO	S DE PAR	RTIDA	1
3	DESC	RIPCIÓN	DE LAS OBRAS	1
	3.1	EDIFIC	IO DE CONTROL	1
4	BASE	S DE CÁL	.CULO	3
	4.1	NORMA	ATIVA	3
	4.2	CARAC	TERÍSTICAS DE LOS MATERIALES	3
	4.3	CARAC	TERÍSTICAS GEOTÉCNICAS	4
	4.4	ACCIO	NES	6
		4.4.1	PERMANENTES	6
		4.4.2	ACCIONES PERMANENTES DE VALOR NO CONSTANTE	7
		4.4.3	ACCIONES INDIRECTAS	7
		4.4.4	VARIABLES	9
		4.4.5	ACCIONES SÍSMICAS	9
		4.4.6	VIENTO	10
	4.5	COEFIC	CIENTES DE SEGURIDAD E HIPÓTESIS DE CARGA	10
		4.5.1	VALORES REPRESENTATIVOS	10
		4.5.2	VALORES DE CÁLCULO	
		4.5.3	HIPÓTESIS DE CARGA	11
		4.5.4	COEFICIENTES DE COMBINACIÓN	14
5	CALC	ULOS ES	TRUCTURALES	15

Apéndices:

Apéndice nº 1.- Datos de partida

Apéndice nº 2.- Dimensionamiento de la cimentación

Apéndice nº 3.- Esfuerzos de los pilares

Apéndice nº 4.- ELU Pilares

Apéndice nº 5.- Dimensionamiento ELU de las vigas

Anexos

- A.1. Datos de entrada
- A.2. Dimensionamiento de elementos de cimentación.
- A.3. Esfuerzos en pilares
- A.4. ELU Pilares
- A.5. Dimensionamiento ELU vigas

1.- OBJETO

Se redacta el presente documento cuyo objeto es la justificación del dimensionamiento de la propuesta técnica, a nivel estructural, del "PROYECTO DE AMPLIACIÓN DE LA E.D.A.R. DE VALDEMAQUEDA, EN VALDEMAQUEDA".

El elemento que se incluye en este anejo es el Edificio de control.

Se ha realizado para ello los cálculos necesarios obteniendo dimensiones y armados, comprobando los coeficientes de seguridad frente a los distintos estados límite que, de manera justificada, se expone en los puntos siguientes.

2.- DATOS DE PARTIDA

En la redacción del presente documento se ha contado con la siguiente información de partida proporcionada por el peticionario:

- Planos de geometría de la estructura.
- INFORME SOBRE LOS TRABAJOS GEOTÉCNICOS PARA PROYECTO DE AMPLIACIÓN DE LA E.D.A.R. DE VALDEMAQUEDA. VALDEMAQUEDA. Ref^a.: C-130014/18 M G-150014-M-IG/01 Noviembre 2015, redactado por INTEINCO.

3.- DESCRIPCIÓN DE LAS OBRAS

3.1 EDIFICIO DE CONTROL.

Se trata de un edificio de una planta, de dimensiones 14.15x 9.20 m2 y una altura de 3.00 m en una parte y 4.00 m en otra parte. Se proyecta un forjado de viguetas pretensadas de 25+5 cm de espesor en la zona de menor altura y de 30+5 cm de espesor en la zona con mayor altura, apoyado en vigas de hormigón armado planas de ancho variable y pilares de hormigón armado de dimensiones 0.30x0.30 m.

La cimentación de proyecta mediante zapatas aisladas, unidas entre sí mediante vigas de atado.

En el forjado de 30+5 se dispondrá un polipasto, el cual se ha tenido en cuenta en el dimensionamiento del mismo.

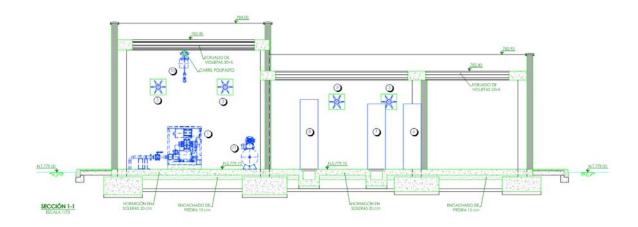


Figura 4: Sección del edificio de control.

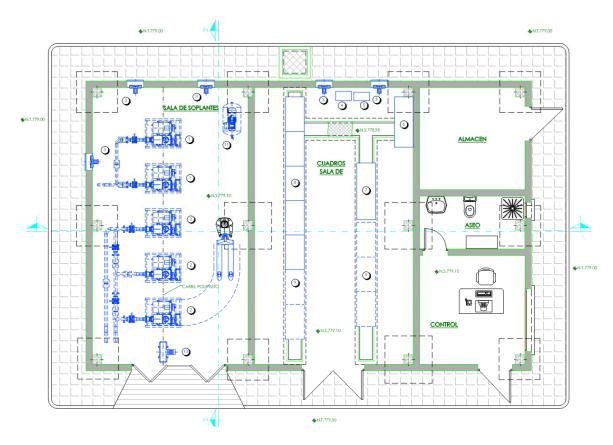


Figura 5: Planta del edificio de control.

4.- BASES DE CÁLCULO

4.1 NORMATIVA

Para la redacción del presente documento se han considerado las siguientes Normas e Instrucciones:

- o CTE Código Técnico de la Edificación 2006.
- EC-2. Eurocódigo2. Proyecto de estructuras de Hormigón.
- NCSE-02. Norma de Construcción Sismorresistente.
- o EHE-2008. Instrucción de Hormigón Estructural.

4.2 CARACTERÍSTICAS DE LOS MATERIALES

Las características de los materiales considerados son las que se indican a continuación:

ARMADURAS PASIVAS

Tipo	B - 500 S
Nivel de control	Normal
Resistencia característica f _{yk}	500 MPa
Coeficiente de minoración γ_{s} (sit. Persistentes o transitorias)	1.15
Resistencia de cálculo f _{yd}	435 MPa
Módulo de Elasticidad Es	200000 MPa

HORMIGÓN ARMADO EN DEPÓSITOS

Tipo	HA-30/B/20/IV+Qb
Nivel de control	Normal
Resistencia característica f _{ck}	30 MPa
Resistencia media f _{cm}	38 MPa
SITUACIONES PERSISTENTES O TRANSITORIAS	
Coeficiente de minoración γc	1.50
Resistencia de cálculo f _{ck} /γ _c	20 MPa
SITUACIONES ACCIDENTALES	
Coeficiente de minoración γ _c	1.30
Resistencia de cálculo $\alpha_{cc}f_{ck}/\gamma_c$	23.08 MPa
MODULO DE ELASTICIDAD	

Módulo de Elasticidad inicial E _{co}	29000 MPa
Módulo de Elasticidad secante E _c	34000 MPa
Módulo de Poisson va	0.20

HORMIGÓN ARMADO EN CIMENTACIONES

Tipo	HA-30 / B / 20 / IIa
Nivel de control	Estadístico
Resistencia característica f _{ck}	30 MPa
Resistencia media f _{cm}	38 MPa
SITUACIONES PERSISTENTES O TRANSITORIAS	
Coeficiente de minoración γc	1.50
Resistencia de cálculo f _{ck} /γ _c	20 MPa
SITUACIONES ACCIDENTALES	
Coeficiente de minoración γ _c	1.30
Resistencia de cálculo $\alpha_{cc}f_{ck}/\gamma_c$	23.08 MPa
MODULO DE ELASTICIDAD	
Módulo de Elasticidad inicial E _{co}	29000 MPa
Módulo de Elasticidad secante E _c	34000 MPa
Módulo de Poisson ν_c	0.20

TERRENO EN TRASDÓS

Tipo	Granular
Ángulo de rozamiento interno	30°
Coeficiente de empuje activo K _a	0.33
Coeficiente de empuje al reposo K _r	0.50
Peso específico	20 KN/m ³

4.3 CARACTERÍSTICAS GEOTÉCNICAS

Para el dimensionamiento de la cimentación de todos los elementos contemplados en el presente documento, se ha tenido en cuenta la siguiente información incluida en la información geotécnica obtenida del INFORME SOBRE LOS TRABAJOS GEOTÉCNICOS PARA PROYECTO DE AMPLIACIÓN DE LA E.D.A.R. DE VALDEMAQUEDA, EN VALDEMAQUEDA. Ref^a.: C-130014/18_M G-150014-M-IG/01 Noviembre 2015, redactado por INTEINCO.

De este informe se deduce que el terreno en la zona presenta los siguientes niveles:

- Rellenos Superficiales. En el sondeo S-3 se aprecia un pequeño espesor (1 m) de suelos arenosos muy alterados con algún bolo suelto de granito. Que se han interpretado como rellenos de procedentes de las obras de construcción de la EDAR acumulados en esta zona de pendiente hacia el río. Sobre estos suelos de mala calidad geotécnica no cabe considerar ninguna acción.
- Arenas algo arcillosas con cantos. Superficialmente en el sondeo S-2 y debajo de los rellenos en el S-3, se detecta una zona de suelos arenosos con algunos cantos, presumiblemente procedentes de la alteración del granito, pudiendo tratarse de suelos redepositarios (coluviones). El espesor de este nivel está en general en torno a 1 m, aunque no llega a detectarse en el sondeo S-1, posiblemente por encontrarse éste en una zona de desmonte excavada en su día para la explanación de la EDAR.
- Suelo residual de granito o jabre. Se trata de un suelo arenoso, algo arcilloso y con gravas o cantos graníticos, procedentes de la meteorización de la roca base. En general se aprecia la estructura de la roca de origen y el suelo mantiene una gran compacidad. La profundidad que alcanza este nivel puede presentar variaciones significativas en pequeñas distancias. Así alcanza hasta 1.55 m en el S-1, hasta 2.90 m en el S-2 y hasta más de 5 m en el S-3, donde no llega a alcanzarse el nivel de roca.
- Roca granítica muy fracturada. Este nivel netamente rocoso no se llega a detectar en el S-3. En general se aprecia una roca de grano medio-grueso, que localmente presenta pequeñas zonas de alteración, normalmente ligadas a las fracturas.

Se ha detectado la presencia de agua subterránea en los sondeos S-1 y S-2 hacia la cota 777, asociadas a la fracturación y a las zonas de alteración. En el sondeo S-3 el agua tiende a estabilizarse a una cota de 772.7 m.

En las excavaciones se recomiendan taludes en torno al 1:1 (H:V) en los posibles rellenos y las arenas con cantos, y del orden de 1:3 en los niveles de jabre. En roca pueden considerarse taludes prácticamente verticales, si bien, dado el grado de fracturación del macizo, deberá prestarse atención a eliminar los posibles bloques que pueden suponer riesgo de caídas.

Respecto a las cimentaciones, con excavaciones de hasta unos 4 m, las rasantes de excavación quedarían en el entorno del sondeo S-3, sobre el sustrato rocoso. Para

cimentaciones sobre este estrato se consideran cimentaciones directas mediante zapatas aisladas o corridas. Se recomiendan para las zapatas aisladas unas dimensiones mínimas de 1x1 m², y de 0.6 m para las zapatas corridas.

Las tensiones admisibles son de 1.7 MPa para las cimentaciones apoyadas sobre las arenas más superficiales, y de 2.3 MPa para las cimentaciones apoyadas sobre jabre.

Las cimentaciones por losas se pueden calcular considerando los valores de tensión admisible anteriores como valores de presiones máximas locales bajo la losa, en función del tipo de terreno sobre el que se apoye.

Los coeficientes de balasto son:

Arenas superficiales
 k₃₀=40 MN/m³

o Jabre k₃₀=200 MN/m³

o Roca k₃₀=5000 MN/m³

En base a los criterios de la EHE-08 se determina que ni el agua puede afectar a las cimentaciones, ni los suelos contienen elementos que supongan problemas de agresividad en los hormigones.

4.4 ACCIONES

En las modelos y comprobaciones estructurales realizadas, se han considerado las acciones que se definen a continuación, correspondientes a las establecidas en las normativas de acciones definidas en el apartado 4.1. NORMATIVA.

4.4.1 PERMANENTES

Las cargas permanentes están constituidas por los pesos de los distintos elementos que forman parte de la estructura. Corresponden a acciones que actúan en todo momento y son constantes en posición y magnitud. Comprenden el peso propio y las cargas muertas. Sus valores se deducen de las dimensiones de los elementos especificadas en los planos y de sus pesos específicos correspondientes.

4.4.1.1 Peso Propio

Corresponde al peso de los elementos estructurales, con su sección bruta, aplicándole el peso específico del material:

Peso propio hormigón:
 25.00 kN/m³

Peso propio acero estructura:
 78.50 kN/m³

Peso propio forjado viguetas 25+5 :
 3.82 kN/m³ (edificio control)

Peso propio forjado viguetas 30+5 : 4.36 kN/m³ (edificio control)

4.4.1.2 Cargas muertas

Son las debidas a los elementos no estructurales que gravitan sobre la estructura, tales como: pavimentos, barreras, etc. Se han considerado los siguientes valores característicos:

Forjado Cubierta edificio control:
 2.50 kN/m²

4.4.2 ACCIONES PERMANENTES DE VALOR NO CONSTANTE

4.4.2.1 Empuje del terreno

Se tienen en cuenta las acciones debidas al relleno del trasdós, considerando independientemente los efectos del peso del terreno y de los empujes.

El peso del terreno se determina aplicando al volumen de terreno que gravita sobre la superficie del elemento horizontal, el peso específico del relleno vertido y compactado.

El empuje sobre los elementos estructurales se determinará de acuerdo con los conceptos geotécnicos, en función de las características del terreno y de la interacción terreno-estructura.

Con el fin de quedarnos del lado de la seguridad, se considerará el empuje activo o el empuje en reposo, según sea más desfavorable para los distintos esfuerzos que se estén analizando, con los valores de los coeficientes de empuje indicados anteriormente. En ningún caso en que su actuación sea desfavorable para el efecto estudiado, el valor del empuje será inferior al equivalente del empuje hidrostático de un fluido de peso específico 5 kN/m³.

4.4.3 ACCIONES INDIRECTAS

4.4.3.1 Reología

Las acciones reológicas se obtienen a partir de los valores característicos de las deformaciones provocadas por la retracción y la fluencia.

La deformación debida a la retracción del hormigón es función de la humedad relativa del ambiente, del espesor ficticio de la pieza, de la cuantía de armadura, de las

condiciones de amasado del hormigón y del tiempo transcurrido desde su puesta en obra.

La deformación debida a la fluencia del hormigón bajo carga constante se considera proporcional a la deformación elástica instantánea.

Este tipo de acciones originan estados tensionales que son variables tanto en altura (geometría, condiciones de borde) como en planta (grado de soleamiento, etc.). Se ha optado por tener en cuenta su efecto sobre la fisuración de la estructura, disponiendo la armadura necesaria.

La introducción de la retracción en un modelo lineal mecánico conduce a la obtención de armados horizontales excesivos y alejados de los realmente necesarios, ya que los esfuerzos generados por éste tipo de acción se rebajan enormemente con la aparición de una microfisuración sistemática a lo largo del muro.

En los elementos sin juntas de retracción se ha optado por obtener la cuantía de armadura horizontal necesaria para que, en el caso de alcanzarse el axil de fisuración, la abertura de fisura resulte inferior a la máxima permitida por la normativa. Se dispone finalmente la más desfavorable entre ésta y la resultante del cálculo con el resto de acciones.

No se disponen juntas de dilatación en los muros con una longitud inferior a 20.00 m en cualquiera de los casos. En cuanto a las juntas de retracción, se disponen cada 10 m. En cuanto a las soleras, se dispondrán juntas de dilatación en aquellos elementos que por su área así lo requieren, según se exponen para cada edificio / depósito en el apartado correspondiente de la presente memoria, así como en los planos.

La Instrucción EHE define los valores dados en la tabla adjunta:

CUANTÍAS GEOMÉTRICAS MÍNIMAS, EN TANTO POR 1000, REFERIDAS A LA SECCIÓN TOTAL DE HORMIGÓN					
		B-400 S	B-500 S		
LOSAS (*)		2.0	1.8		
MUROS (**)	HORIZONTAL	4.0	3.2		
	VERTICAL	1.2	0.9		

^(*) Cuantía mínima de cada una de las armaduras, longitudinal y transversal repartida en las dos caras. Las losas apoyadas sobre el terreno requieren un estudio especial.

^(**) La cuantía mínima vertical es la correspondiente a la cara de tracción. Se recomienda disponer en la cara opuesta una armadura mínima igual al 30% de la consignada.

A partir de los 2,50 m de altura del fuste del muro y siempre que esta distancia no sea menor que la mitad de la altura del muro podrá reducirse la cuantía horizontal a un 2‰. En

el caso en que se dispongan juntas verticales de contracción a distancias no superiores a 7,50 m, con la armadura interrumpida, las cuantías geométricas horizontales mínimas pueden reducirse al 2‰. La armadura mínima horizontal deberá repartirse en ambas caras. Para muros vistos por ambas caras debe disponerse el 50% en cada cara. En el caso de muros con espesores superiores a 50 cm, se considerará un área efectiva de espesor máximo 50 cm distribuidos en 25 cm a cada cara, ignorando la zona central que queda entre estas capas superficiales.

4.4.4 VARIABLES

Son acciones externas a la estructura que pueden actuar o no sobre ella por razón de su uso. Se han considerado los siguientes valores característicos:

Forjados Cubierta edificio control: 1.00 kN/m²

Polipasto: 20 kN

4.4.4.1 Sobrecarga en trasdós

A efectos del cálculo de empujes del terreno sobre elementos de la estructura en contacto con él, se considerará, actuando en la parte superior del terraplén en la zona por donde pueda discurrir el tráfico, una sobrecarga uniforme de 10 kN/m².

o SC Tráfico: $k_0 \times q_{trafico} = 0.50 \times 10 = 5.00 \text{ KN/m}^2$.

4.4.4.2 Empuje hidrostático del agua

Se considera la actuación del empuje hidrostático del agua del interior de la arqueta de medida de caudal. Se considera un peso específico para el agua del interior de 12 kN/m³.

Se ha considerado que el empuje hidrostático del agua puede actuar sin que actúe el empuje del terreno, para controlar la fisuración.

4.4.5 ACCIONES SÍSMICAS

Según la normativa NCSE-02, las acciones sísmicas se considerarán únicamente cuando el valor de la aceleración básica sea igual o superior a 0.04 g.

Para la localización de la E.T.A.P. VALDEMAQUEDA situada en el término municipal de Valdemaqueda (Madrid), la NCSE-02 establece una aceleración básica menor a 0.04 g, por lo que no se han tenido en cuenta en los cálculos los efectos de las acciones sísmicas.

4.4.6 VIENTO

Se ha tenido en cuenta en el cálculo de los edificios, según los valores y coeficientes del CTE-06 para el entorno de implantación.

4.5 COEFICIENTES DE SEGURIDAD E HIPÓTESIS DE CARGA

4.5.1 VALORES REPRESENTATIVOS

De acuerdo con la Instrucción vigente CTE-06, los valores representativos de las acciones utilizados para la verificación de los estados límites se establecen en los siguientes apartados.

4.5.1.1 **Permanentes (G)**

Para las acciones permanentes se considerará un único valor representativo, coincidente con el valor característico G_k .

4.5.1.2 Permanentes de valor no constante (G*)

Podemos distinguir entre:

- Acciones reológicas. Para las acciones de origen reológico, fluencia y retracción, se considerará un único valor representativo, coincidente con el valor característico R_{k,t} correspondiente al instante t en el que se realiza la comprobación.
- Acciones debidas al terreno. Para las acciones correspondientes al peso del terreno se considerará un único valor representativo, coincidente con el valor característico G*_{WT,k}.

Para las acciones correspondientes al empuje y movimientos del terreno bajo las cimentaciones se considerará el valor representativo de acuerdo con lo expuesto anteriormente.

4.5.1.3 Variables (Q)

Cada una de las acciones variables podrá considerarse con los siguientes valores representativos:

- Valor característico Q_k. Será el valor de la acción cuando actúe aisladamente, como ha sido definido anteriormente.
- o Valor de combinación $\psi_0 x Q_k$. Será el valor de la acción cuando actúe con alguna otra acción variable, para tener en cuenta la pequeña probabilidad de que actúen

simultáneamente los valores más desfavorables de varias acciones independientes.

- o Valor frecuente $\psi_1 x Q_k$. Será el valor de la acción que sea sobrepasado durante un período de corta duración respecto a la vida útil de la estructura.
- o Valor casi permanente $\psi_2 x Q_k$. Será el valor de la acción que sea sobrepasado durante una gran parte de la vida útil de la estructura (el 50% o más del tiempo) o bien el valor medio.

4.5.1.4 Accidentales (A)

Para las acciones accidentales se considerará un único valor representativo coincidente con el valor característico A_k .

4.5.2 VALORES DE CÁLCULO

Los valores de cálculo de las diferentes acciones serán los obtenidos aplicando el correspondiente coeficiente parcial de seguridad γ_F a los valores representativos de las acciones definidas anteriormente.

Los coeficientes parciales de seguridad según la CTE-06 se indican en la siguiente tabla:

TIPO DE VERIFICACION	RESISTENCIA		ESTABILIDAD		
SITUACIONES		PERSISTENTES O TRANSITORIAS			
ACCIÓN	Favorable	Desfavo- rable	Favorable	Desfavo- rable	
PESO PROPIO / TERRENO	0.80	1.35	0.90	1.10	
EMPUJE TERRENO	0.70	1.35	0.80	1.35	
PRESION AGUA	0.90	1.20	0.95	1.05	
VARIABLE	0.00	1.50	0.00	1.50	

Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C.

4.5.3 <u>HIPÓTESIS DE CARGA</u>

Según la Instrucción CTE-06, las hipótesis de carga a considerar se formarán combinando los valores de cálculo de las acciones cuya actuación pueda ser simultánea, según los criterios generales que se indican a continuación:

A) ESTADOS LÍMITE ÚLTIMOS.

Para la comprobación de los Estados Límite Últimos se considerarán las situaciones persistentes y transitorias, y las accidentales con o sin sismo.

A1) Situaciones persistentes o transitorias.

Las combinaciones de las distintas acciones consideradas en estas situaciones, excepto en el ELU de fatiga, se realizan de acuerdo con el siguiente criterio:

$$\sum_{i>1} \gamma_{G,j} G_{k,j} + \sum_{i>1} \gamma_{G^*,i} G^*_{k,i} + \gamma_{Q,1} Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \Psi_{0,i} Q_{k,i}$$

Donde:

G_{k,j} = Valor representativo de cada acción permanente.

G*_{k,i} = Valor representativo de cada acción permanente de valor no constante.

 $Q_{k,1}$ = Valor representativo (valor característico) de la acción variable dominante.

 $\psi_{0,i}Q_{k,i}$ = Valores representativos (valores de combinación) de las acciones variables concomitantes con la acción variable dominante.

En general, deberán realizarse tantas hipótesis o combinaciones como sea necesario, considerando, en cada una de ellas, una de las acciones variables como dominante y el resto como concomitantes.

A2) Situaciones extraordinarias.

Las combinaciones de las distintas acciones consideradas en estas situaciones se realizarán de acuerdo con el siguiente criterio:

$$\sum_{j \geq 1} \gamma_{G,j} G_{k,j} + \sum_{i \geq 1} \gamma_{G^*,i} G_{-k,i} + \gamma_A A_k + \gamma_{Q,1} \Psi_{1,1} Q_{k,1} + \sum_{i > 1} \gamma_{Q,i} \Psi_{2,i} Q_{k,i}$$

Donde:

G_{k,i}= Valor representativo de cada acción permanente.

G*_{k,i} = Valor representativo de cada acción permanente de valor no constante.

 $\psi_{1,1}$ Q_{k,1}= Valor representativo frecuente de la acción variable dominante.

 $\psi_{2,i}Q_{k,i}$ = Valores representativos casi-permanentes de las acciones variables concomitantes con la acción variable dominante y la acción accidental.

A_k= Valor representativo característico de la acción accidental.

Para estas combinaciones serán de aplicación las observaciones indicadas en el planteamiento de las combinaciones A1).

A3) Situaciones accidentales de sismo.

Las combinaciones de las distintas acciones consideradas en estas situaciones se realizarán de acuerdo con el siguiente criterio:

$$\sum_{j\geq 1} G_{k,j} + \sum_{i\geq 1} G^*_{k,i} + \gamma_A A_{E,k} + \sum_{i>1} \Psi_{2,1} Q_{k,1}$$

Donde:

 $G_{k,j}$ = Valor representativo de cada acción permanente.

G*_{k,i} = Valor representativo de cada acción permanente de valor no constante.

 $\psi_{2,1}$ $Q_{k,1}$ = Valor representativo casi-permanentes de la acción relativa a la sobrecarga de uso.

A_{E,k}= Valor representativo característico de la acción sísmica.

Por otro lado, se analiza la situación de flotación para lo que se supone actuando la subpresión sobre la losa de fondo de cada elemento, supuesto, del lado de la seguridad, nivel freático en superficie.

B) ESTADOS LÍMITE DE SERVICIO.

Para cada situación de dimensionado y criterio considerado, los efectos de las acciones se determinarán a partir de la correspondiente combinación de acciones e influencias simultáneas, de acuerdo con los criterios que se establecen a continuación.

B1) Los efectos debidos a las acciones de corta duración que pueden resultar irreversibles, se determinan mediante combinaciones de acciones, del tipo denominado característica, a partir de la expresión:

$$\sum_{j \geq l} G_{k,j} + \sum_{i \geq l} G_{-k,i} + Q_{k,1} + \sum_{i > l} \Psi_{0,i} \ Q_{k,i}$$

B2) Los efectos debidos a las acciones de corta duración que pueden resultar reversibles, se determina mediante combinación de acciones, del tipo denominado frecuente, a partir de la expresión:

$$\sum_{j \geq l} G_{k,j} + \sum_{i \geq l} G^{\scriptscriptstyle{-}}_{k,i} + \psi_{l,1} \, Q_{k,1} + \sum_{i > l} \psi_{2,i} \, Q_{k,i}$$

B3) Los efectos debidos a las acciones de larga duración, se determinan mediante combinaciones de acciones, del tipo denominado casi permanente, a partir de la expresión:

$$\sum_{_{i\geq l}} G_{k,j} + \sum_{_{i\geq l}} G^{_{^-}k,i} + \sum_{_{i\geq l}} \psi_{2,i} \; Q_{k,i}$$

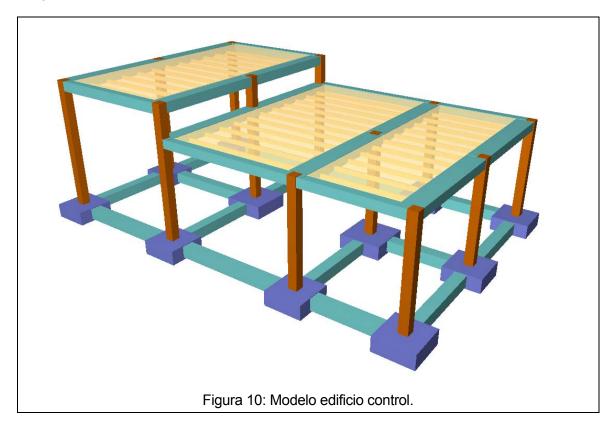
4.5.4 COEFICIENTES DE COMBINACIÓN

Los valores de los coeficientes ψ se recogen en la siguiente tabla. Estos coeficientes han sido extraídos del Libro 2, capítulo 4, Tabla 4.2 del C.T.E.:

Coeficientes de simultaneidad	ψ0	Ψ1	Ψ2
Sobrecarga superficial de uso			
(Categorías según DB-SE-AE)			
- Zonas residenciales (Categoría A)	0.70	0.50	0.30
- Zonas administrativas (Categoría B)	0.70	0.50	0.30
- Zonas destinadas al público (Categoría C)	0.70	0.70	0.60
- Zonas destinadas al público (Categoría D)	0.70	0.70	0.60
- Zonas de tráfico y de aparcamiento de vehículos ligeros con un peso total inferior a 30 kN (Categoría F)	0.70	0.70	0.60
- Cubiertas transitables (Categoría G)		(1)	
- Cubiertas accesibles únicamente para mantenimiento (Categoría H)		0	0
Nieve			
- para altitudes >1000 m	0.70	0.50	0.20
- para altitudes <1000 m		0.20	0
Viento		0.50	0
Temperatura		0.50	0
Acciones variables del terreno	0.70	0.70	0.70

(1) En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.

5.- CALCULOS ESTRUCTURALES


Se ha realizado un modelo discreto tridimensional para el edificio mediante el programa informático CYPECAD, del paquete informático CYPE, en el cual se introducen todos los pilares, forjados y vigas que forman la estructura.

El modelo utilizado emplea el método de rigidez para la obtención de desplazamientos en los nudos, a partir de los cuales se obtienen los esfuerzos en viguetas y reacciones en apoyos. Los resultados se obtienen para cada hipótesis simple de carga y combinación, obtenidas éstas según la normativa correspondiente en cada caso.

El programa empleado realiza un cálculo lineal mecánico y geométrico de los materiales que forman la estructura.

CYPECAD nos proporciona la armadura necesaria a disponer en las vigas y pilares según la EHE 08.

A partir de las reacciones en los arranques de los pilares, se dimensionan las zapatas según CTE-06.

Apéndice nº 1.- Datos de partida

ÍNDICE

1	VERSIÓN DEL PROGRAMA Y NÚMERO DE LICENCIA	2
2	DATOS GENERALES DE LA ESTRUCTURA	2
3	NORMAS CONSIDERADAS.	2
4	ACCIONES CONSIDERADAS	2
	4.1 Gravitatorias	2
	4.2 Viento	2
	4.3 Sismo	
	4.4 Hipótesis de carga	
	4.5 Listado de cargas	3
5	ESTADOS LÍMITE	4
6	SITUACIONES DE PROYECTO	4
	6.1 Coeficientes parciales de seguridad (g) y coeficientes de combinación (y)	4
	6.2 Combinaciones	5
7	DATOS GEOMÉTRICOS DE GRUPOS Y PLANTAS	15
8	DATOS GEOMÉTRICOS DE PILARES, PANTALLAS Y MUROS	
9	DIMENSIONES, COEFICIENTES DE EMPOTRAMIENTO Y COEFICIENTES DE PANDEO PARA CADA PLANTA	15
10	LISTADO DE PAÑOS	15
	10.1 Autorización de uso	16
11	LOSAS Y ELEMENTOS DE CIMENTACIÓN	20
12	MATERIALES UTILIZADOS	
	12.1 Hormigones	
	12.2 Aceros por elemento y posición	
	12.2.1 Aceros en barras	. 20
	12.2.2. Aceros en perfiles	20

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

1.- VERSIÓN DEL PROGRAMA Y NÚMERO DE LICENCIA

Versión: 2014

Número de licencia: 55200

2.- DATOS GENERALES DE LA ESTRUCTURA

Proyecto: EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Clave: EDIFICIO CONTROL_REV2

3.- NORMAS CONSIDERADAS

Hormigón: EHE-08

Aceros conformados: CTE DB SE-A

Aceros laminados y armados: CTE DB SE-A

Forjados de viguetas: EHE-08

Categoría de uso: G2. Cubiertas accesibles únicamente para mantenimiento

4.- ACCIONES CONSIDERADAS

4.1.- Gravitatorias

Planta	S.C.U (kN/m²)	Cargas muertas (kN/m²)
Forjado 2	1.0	2.5
Forjado 1	1.0	2.5
Cimentación	0.0	0.0

4.2.- Viento

CTE DB SE-AE

Código Técnico de la Edificación.

Documento Básico Seguridad Estructural - Acciones en la Edificación

Zona eólica: A

Grado de aspereza: II. Terreno rural llano sin obstáculos

La acción del viento se calcula a partir de la presión estática q_e que actúa en la dirección perpendicular a la superficie expuesta. El programa obtiene de forma automática dicha presión, conforme a los criterios del Código Técnico de la Edificación DB-SE AE, en función de la geometría del edificio, la zona eólica y grado de aspereza seleccionados, y la altura sobre el terreno del punto considerado:

$$q_e = q_b \cdot c_e \cdot c_p$$

Donde:

q_b Es la presión dinámica del viento conforme al mapa eólico del Anejo D.

 c_e Es el coeficiente de exposición, determinado conforme a las especificaciones del Anejo D.2, en función del grado de aspereza del entorno y la altura sobre el terreno del punto considerado.

 c_p Es el coeficiente eólico o de presión, calculado según la tabla 3.5 del apartado 3.3.4, en función de la esbeltez del edificio en el plano paralelo al viento.

	Viento X			Viento Y		
q₅ (kN/m²)	esbeltez	c _p (presión)	c _p (succión)	esbeltez	c _p (presión)	c _p (succión)
0.42	0.32	0.70	-0.33	0.49	0.70	-0.40

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Anchos de banda				
Plantas	Ancho de banda Y (m)	Ancho de banda X (m)		
En todas las plantas	9.20	14.15		

No se realiza análisis de los efectos de 2º orden

Coeficientes de Cargas

+X: 1.00 -X:1.00 +Y: 1.00 -Y:1.00

Cargas de viento				
Planta	Viento X (kN)	Viento Y (kN)		
Forjado 2	5.053	8.289		
Forjado 1	19.943	32.718		

Conforme al artículo 3.3.2., apartado 2 del Documento Básico AE, se ha considerado que las fuerzas de viento por planta, en cada dirección del análisis, actúan con una excentricidad de $\pm 5\%$ de la dimensión máxima del edificio.

4.3.- Sismo

Sin acción de sismo

4.4.- Hipótesis de carga

Automáticas	Peso propio					
	Cargas muertas					
		Sobrecarga de uso				
		Viento +X ex	(C.+			
		Viento +X ex	(C			
		Viento -X ex	C.+			
		Viento -X ex	C			
		Viento +Y ex				
	Viento +Y exc					
	Viento -Y exc.+					
	Viento -Y exc					
Adicionales	Referencia	Descripción	Naturaleza			
	Q 1 (1)	POLIPASTO	Sobrecarga de uso			
	Q 1 (2)	POLIPASTO	Sobrecarga de uso			
	Q 1 (3)	POLIPASTO	Sobrecarga de uso			
	Q 1 (4)	POLIPASTO	Sobrecarga de uso			

4.5.- Listado de cargas

Cargas especiales introducidas (en kN, kN/m y kN/m²)

Grupo	Hipótesis	Tipo	Valor	Coordenadas
1	Cargas muertas	Lineal	10.00	(5.05, 4.41) (5.05, 8.76)
	Cargas muertas	Lineal	10.00	(5.05, 0.15) (5.05, 4.41)
	Cargas muertas	Lineal	5.00	(4.97, 8.71) (10.01, 8.70)
	Cargas muertas	Lineal	5.00	(10.00, 8.68) (13.60, 8.70)
	Cargas muertas	Lineal	5.00	(13.60, 3.20) (13.60, 8.71)
	Cargas muertas	Lineal	5.00	(13.60, 0.15) (13.60, 3.20)
	Cargas muertas	Lineal	5.00	(10.05, 0.15) (13.60, 0.15)
	Cargas muertas	Lineal	5.00	(4.95, 0.15) (10.05, 0.15)
2	Cargas muertas	Lineal	5.00	(4.95, 0.15) (4.95, 4.41)
	Cargas muertas	Lineal	5.00	(4.95, 4.41) (4.94, 8.70)

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Grupo	Hipótesis	Tipo	Valor	Coordenadas
	Cargas muertas	Lineal	5.00	(0.14, 8.72) (4.90, 8.72)
	Cargas muertas	Lineal	5.00	(0.15, 4.41) (0.15, 8.74)
	Cargas muertas	Lineal	5.00	(0.15, 0.15) (0.15, 4.41)
	Cargas muertas	Lineal	5.00	(0.15, 0.15) (4.95, 0.15)
	Q 1 (1)	Puntual	20.00	(2.25, 7.95)
	Q 1 (1)	Puntual	20.00	(2.30, 0.10)
	Q 1 (2)	Puntual	20.00	(2.25, 6.54)
	Q 1 (3)	Puntual	20.00	(2.26, 4.46)
	Q 1 (4)	Puntual	20.00	(2.25, 2.36)

5.- ESTADOS LÍMITE

E.L.U. de rotura. Hormigón	CTE
E.L.U. de rotura. Hormigón en cimentaciones	Cota de nieve: Altitud inferior o igual a 1000 m
Tensiones sobre el terreno Desplazamientos	Acciones características

6.- SITUACIONES DE PROYECTO

Para las distintas situaciones de proyecto, las combinaciones de acciones se definirán de acuerdo con los siguientes criterios:

- Con coeficientes de combinación

$$\sum_{i \geq 1} \gamma_{Gj} G_{kj} + \gamma_{Q1} \Psi_{p1} Q_{k1} + \sum_{i \geq 1} \gamma_{Qi} \Psi_{ai} Q_{ki}$$

- Sin coeficientes de combinación

$$\sum_{j \geq 1} \gamma_{Gj} G_{kj} + \sum_{i \geq 1} \gamma_{Qi} Q_{ki}$$

- Donde:

G_k Acción permanente

Q_k Acción variable

 $\gamma_{\scriptscriptstyle G}$ Coeficiente parcial de seguridad de las acciones permanentes

 $\gamma_{\!\scriptscriptstyle Q,l}$ Coeficiente parcial de seguridad de las acciones variables de acompañamiento

 $\psi_{\mbox{\tiny p,1}}$ Coeficiente de combinación de la acción variable principal

 $\psi_{a,i}$ Coeficiente de combinación de las acciones variables de acompañamiento

6.1.- Coeficientes parciales de seguridad (g) y coeficientes de combinación (y)

Para cada situación de proyecto y estado límite los coeficientes a utilizar serán:

E.L.U. de rotura. Hormigón: EHE-08

Persistente o transitoria				
	Coeficientes parciales de seguridad (γ)		Coeficiente	es de combinación (ψ)
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)
Carga permanente (G)	1.000	1.350	-	-
Sobrecarga (Q)	0.000	1.500	1.000	0.000
Viento (Q)	0.000	1.500	1.000	0.600

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

E.L.U. de rotura. Hormigón en cimentaciones: EHE-08 / CTE DB-SE C

Persistente o transitoria				
	Coeficientes parciales de seguridad (γ)		Coeficiente	es de combinación (ψ)
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)
Carga permanente (G)	1.000	1.600	-	-
Sobrecarga (Q)	0.000	1.600	1.000	0.000
Viento (Q)	0.000	1.600	1.000	0.600

Tensiones sobre el terreno

Característica				
	Coeficientes parciales de seguridad (γ)		Coeficiente	s de combinación (ψ)
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)
Carga permanente (G)	1.000	1.000	-	-
Sobrecarga (Q)	0.000	1.000	1.000	1.000
Viento (Q)	0.000	1.000	1.000	1.000

Desplazamientos

Característica				
	Coeficientes parciales de seguridad (γ)		Coeficiente	s de combinación (ψ)
	Favorable	Desfavorable	Principal (ψ _p)	Acompañamiento (ψ _a)
Carga permanente (G)	1.000	1.000	-	-
Sobrecarga (Q)	0.000	1.000	1.000	1.000
Viento (Q)	0.000	1.000	1.000	1.000

6.2.- Combinaciones

Nombres de las hipótesis

PP	Peso propio
CM	Cargas muertas
Qa	Sobrecarga de uso
Q 1 (1)	POLIPASTO
Q 1 (2)	POLIPASTO
Q 1 (3)	POLIPASTO
Q 1 (4)	POLIPASTO
V(+X exc.+)	Viento +X exc.+
V(+X exc)	Viento +X exc
V(-X exc.+)	Viento -X exc.+
V(-X exc)	Viento -X exc
V(+Y exc.+)	Viento +Y exc.+
V(+Y exc)	Viento +Y exc
V(-Y exc.+)	Viento -Y exc.+
V(-Y exc)	Viento -Y exc

■ E.L.U. de rotura. Hormigón

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Comb.	PP	CM	Qa	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
2	1.000	1.000													
3	1.000	1.000	1.500												
4	1.350	1.350	1.500												
5	1.000	1.000		1.500											
6	1.350	1.350		1.500											
7	1.000	1.000	1.500	1.500											
8	1.350	1.350	1.500	1.500											
9	1.000	1.000			1.500										
10	1.350	1.350	1.500		1.500 1.500										
12	1.350	1.350	1.500		1.500										
13	1.000	1.000				1.500									
14	1.350	1.350				1.500									
15	1.000	1.000	1.500			1.500									
16	1.350	1.350	1.500			1.500									
17	1.000	1.000					1.500								
18 19	1.350	1.350	1.500				1.500								
20	1.350	1.350	1.500				1.500								
21	1.000	1.000						1.500							
22	1.350	1.350						1.500							
23	1.000	1.000	1.500					0.900							
24	1.350	1.350	1.500					0.900							
25	1.000	1.000		1.500				0.900							
26 27	1.350	1.350	1.500	1.500 1.500				0.900							
28	1.350	1.350	1.500	1.500				0.900							
29	1.000	1.000	1.300	1.300	1.500			0.900							
30	1.350	1.350			1.500			0.900							
31	1.000	1.000	1.500		1.500			0.900							
32	1.350	1.350	1.500		1.500			0.900							
33	1.000	1.000				1.500		0.900							
34	1.350	1.350	1 500			1.500		0.900							
35 36	1.000	1.000	1.500			1.500		0.900							
37	1.000	1.000	1.500			1.500	1.500	0.900							
38	1.350	1.350					1.500	0.900							
39	1.000	1.000	1.500				1.500	0.900							
40	1.350	1.350	1.500				1.500	0.900							
41	1.000	1.000							1.500						
42	1.350	1.350	1.500						1.500						
43	1.000	1.000	1.500						0.900						
45	1.000	1.000	1.500	1.500					0.900						
46	1.350	1.350		1.500					0.900						
47	1.000	1.000	1.500	1.500					0.900						
48	1.350	1.350	1.500	1.500					0.900						
49	1.000	1.000			1.500				0.900						
50	1.350	1.350	1.500		1.500				0.900						
51 52	1.000	1.000	1.500		1.500				0.900						
53	1.000	1.000	1.500		1.500	1.500			0.900						
54	1.350	1.350				1.500			0.900						
55		1.000	1.500			1.500			0.900						
56	1.350	1.350	1.500			1.500			0.900						
57	1.000	1.000					1.500		0.900						
58 59	1.350	1.350	1.500				1.500		0.900						
60	1.350	1.350	1.500				1.500		0.900						
61	1.000	1.000								1.500					
62	1.350	1.350								1.500					
63	1.000	1.000	1.500							0.900					
64	1.350	1.350	1.500							0.900					
65	1.000	1.000		1.500						0.900					
66	1.350	1.350	1.500	1.500 1.500						0.900					
68	1.350	1.350	1.500	1.500						0.900					
69	1.000	1.000			1.500					0.900					
70	1.350	1.350			1.500					0.900					
71	1.000	1.000	1.500		1.500					0.900					
72	1.350	1.350	1.500		1.500					0.900					
73	1.000	1.000				1.500				0.900					
74 75	1.350	1.350	1.500			1.500 1.500				0.900					
76	1.350	1.350	1.500			1.500				0.900					
77	1.000	1.000					1.500			0.900					
78	1.350	1.350					1.500			0.900					
79	1.000	1.000	1.500				1.500			0.900					
80	1.350	1.350	1.500				1.500			0.900					
81	1.000	1.000									1.500				
82 83	1.350	1.350	1 500								1.500 0.900				
0.5	1.000	1.000	1.500								0.900			l	

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Control March Control March																
180 130	Comb.	PP 1.250	CM 1.250	Qa 1.500	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
100 100				1.500	1.500											
180 150																
19																
1				1.500	1.500											
150 150																
1				1.500												
Mathematics 1,500																
1																
196 196																
1.00																
98 1500				1.500			1.500	1.500								
100																
190																
100				1.500				1.500				0.900	1.500			
1908 1908 1908 1908 1908 1908 1908 1909																
194				1.500												
1906 1908 1909	104	1.350	1.350	1.500									0.900			
190																
1888 1380 1380 1500				1.500												
199																
190				1.500	1.500	1.500										
132 1350 1350 1500																
130																
154				1.500		1.500										
115 1.000																
110 130 130 150				1.500												
180 130 130 130 150																
190	117															
120																
120																
122 1300 1300 1500 1				1.500				1.500					0.900	1.500		
1286 1350 1350 1500																
1200	123	1.000	1.000	1.500										0.900		
129 1390 1390 1390 1500 1				1.500												
128																
128				1.500												
130																
131 1.000 1.000 1.500	129	1.000	1.000			1.500								0.900		
1322																
1338 1,000 1,000 1,500																
134 1350 1350 1500 1	-			1.500		1.500	1.500									
136																
137 1,000 1,000 1,500	135	1.000	1.000	1.500			1.500							0.900		
138				1.500			1.500									
139																
140				1.500												
142 1.350 1.350 1.500 1.500 1.500 0.900 1.500 0																
143 1.000 1.000 1.500 0.900 0.900 144 1.350 1.350 1.500 0.900 0.900 145 1.000 1.000 1.500 0.900 0.900 146 1.350 1.350 1.500 0.900 0.900 147 1.000 1.000 1.500 0.900 0.900 148 1.350 1.500 0.900 0.900 150 1.350 1.500 0.900 0.900 150 1.350 1.500 0.900 0.900 151 1.000 1.500 1.500 0.900 0.900 152 1.350 1.500 0.900 0.900 0.900 153 1.000 1.500 1.500 0.900 0.900 0.900 154 1.350 1.500 0.900 0.900 0.900 0.900 0.900 155 1.000 1.500 1.500 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 </td <td>141</td> <td>1.000</td> <td>1.000</td> <td></td>	141	1.000	1.000													
144 1.350 1.350 1.500 0.900 0.900 145 1.000 1.500 0.900 0.900 0.900 146 1.350 1.500 0.900 0.900 0.900 147 1.000 1.000 1.500 0.900 0.900 148 1.350 1.550 1.500 0.900 0.900 149 1.000 1.000 1.500 0.900 0.900 150 1.350 1.500 0.900 0.900 151 1.000 1.500 1.500 0.900 152 1.350 1.500 0.900 0.900 153 1.000 1.500 0.900 0.900 154 1.350 1.350 0.900 0.900 155 1.000 1.500 0.900 0.900 155 1.000 1.500 0.900 0.900 156 1.350 1.500 0.900 0.900 157 1.000				4 = 4 :												
145 1.000 1.000 1.500 0.900 0.900 146 1.350 1.350 1.500 0.900 0.900 147 1.000 1.000 1.500 0.900 0.900 148 1.350 1.500 0.900 0.900 149 1.000 1.000 1.500 0.900 150 1.350 1.500 0.900 151 1.000 1.000 1.500 0.900 152 1.350 1.500 0.900 0.900 153 1.000 1.000 1.500 0.900 154 1.350 1.350 1.500 0.900 155 1.000 1.000 1.500 0.900 155 1.000 1.000 1.500 0.900 155 1.350 1.500 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.500 0.900 159 1.000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
146 1.350 1.350 1.500 0.900 147 1.000 1.000 1.500 0.900 148 1.350 1.350 1.500 0.900 150 1.350 1.350 1.500 0.900 150 1.350 1.350 1.500 0.900 151 1.000 1.000 1.500 0.900 152 1.350 1.350 1.500 0.900 153 1.000 1.000 1.500 0.900 154 1.350 1.350 1.500 0.900 155 1.000 1.500 0.900 0.900 155 1.000 1.500 0.900 0.900 156 1.350 1.500 0.900 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.350 1.500 0.900 159 1.000 1.500 0.900 0.900 160 1.350 1.500 0.900 0.900 161 1.000 1.000 1.				1.000	1,500											
148 1.350 1.350 1.500 1.500 0.900 149 1.000 1.000 1.500 0.900 0.900 150 1.350 1.350 1.500 0.900 151 1.000 1.000 1.500 0.900 152 1.350 1.350 1.500 0.900 153 1.000 1.000 1.500 0.900 154 1.350 1.350 1.500 0.900 155 1.000 1.500 0.900 0.900 155 1.000 1.500 0.900 0.900 156 1.350 1.500 0.900 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.500 0.900 0.900 159 1.000 1.000 1.500 0.900 160 1.350 1.500 0.900 0.900 161 1.000 1.000 1.500 0.900 0.900 163 1.000 1.500 0.900 0.900																
149 1.000 1.000 1.500 0.900 150 1.350 1.350 1.500 0.900 151 1.000 1.500 1.500 0.900 152 1.350 1.350 1.500 0.900 153 1.000 1.000 0.900 0.900 154 1.350 1.350 0.900 0.900 155 1.000 1.000 1.500 0.900 155 1.350 1.500 0.900 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.350 1.500 0.900 159 1.000 1.000 1.500 0.900 159 1.000 1.000 1.500 0.900 159 1.350 1.500 0.900 150 1.500 0.900 159 1.000 1.500 0.900 160 1.350 1.500 0.900 161 1.000 1.500 0.900 162 1.350 1.500 0.900<	147	1.000	1.000												0.900	
150	-			1.500	1.500											
151 1.000 1.000 1.500 1.500 0.900 152 1.350 1.350 1.500 0.900 0.900 153 1.000 1.000 1.500 0.900 0.900 154 1.350 1.350 0.900 0.900 0.900 155 1.000 1.500 0.900 0.900 0.900 156 1.350 1.500 0.900 0.900 0.900 157 1.000 1.000 1.500 0.900 0.900 158 1.350 1.350 1.500 0.900 0.900 158 1.350 1.500 0.900 0.900 0.900 159 1.000 1.500 0.900 0.900 0.900 160 1.350 1.350 1.500 0.900 0.900 161 1.000 1.000 1.500 0.900 1.500 0.900 163 1.000 1.500 0.900 0.900 0.900 0.90																
152 1.350 1.500 1.500 0.900 153 1.000 1.000 0.900 0.900 154 1.350 1.350 0.900 0.900 155 1.000 1.500 0.900 0.900 156 1.350 1.350 1.500 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.350 0.900 0.900 159 1.000 1.500 0.900 0.900 160 1.350 1.350 1.500 0.900 161 1.000 1.000 0.900 0.900 161 1.000 1.000 0.900 0.900 162 1.350 1.500 0.900 0.900 164 1.350 1.500 0.900 0.900 164 1.350 1.500 0.900 0.900 165 1.000 1.500 0.900 0.900 166 1.350 <td< td=""><td></td><td></td><td></td><td>1.500</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				1.500												
153 1.000 1.000 1.500 0.900 154 1.350 1.350 1.500 0.900 155 1.000 1.000 1.500 0.900 156 1.350 1.350 0.900 0.900 157 1.000 1.000 0.900 0.900 158 1.350 1.350 0.900 0.900 159 1.000 1.000 1.500 0.900 160 1.350 1.500 0.900 0.900 161 1.000 1.000 1.500 0.900 162 1.350 1.350 1.500 0.900 164 1.350 1.500 0.900 0.900 164 1.350 1.500 0.900 0.900 165 1.000 1.500 0.900 0.900 166 1.350 1.500 0.900 0.900																
155 1.000 1.500 1.500 0.900 156 1.350 1.350 1.500 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.350 0.900 0.900 159 1.000 1.500 0.900 0.900 160 1.350 1.500 0.900 0.900 161 1.000 1.000 0.900 0.900 162 1.350 1.350 0.900 0.900 163 1.000 1.500 0.900 0.900 164 1.350 1.500 0.900 0.900 165 1.000 1.500 0.900 0.900 166 1.350 1.500 0.900 0.900	153	1.000	1.000												0.900	
156 1.350 1.500 1.500 0.900 157 1.000 1.000 1.500 0.900 158 1.350 1.350 1.500 0.900 159 1.000 1.500 0.900 0.900 160 1.350 1.350 1.500 0.900 161 1.000 1.000 1.500 1.500 162 1.350 1.350 1.500 1.500 163 1.000 1.000 1.500 0.900 164 1.350 1.500 0.900 165 1.000 1.500 0.900 166 1.350 1.500 0.900																
157 1.000 1.000 1.500 0.900 158 1.350 1.350 1.500 0.900 159 1.000 1.500 0.900 0.900 160 1.350 1.500 0.900 0.900 161 1.000 1.000 0.900 1.500 162 1.350 1.350 1.500 0.900 163 1.000 1.000 1.500 0.900 164 1.350 1.500 0.900 165 1.000 1.500 0.900 166 1.350 1.500 0.900																
158 1.350 1.350 1.500 0.900 159 1.000 1.500 1.500 0.900 160 1.350 1.350 1.500 0.900 161 1.000 1.000 0.900 1.500 162 1.350 1.350 1.500 1.500 163 1.000 1.000 1.500 0.900 164 1.350 1.350 1.500 0.900 165 1.000 1.000 1.500 0.900 166 1.350 1.350 1.500 0.900				1.0UU			1.500	1.500								
159 1.000 1.000 1.500 1.500 0.900 160 1.350 1.350 1.500 0.900 161 1.000 1.000 1.500 1.500 162 1.350 1.350 1.500 1.500 163 1.000 1.000 1.500 0.900 164 1.350 1.350 1.500 0.900 165 1.000 1.000 1.500 0.900 166 1.350 1.350 1.500 0.900																
161 1.000 1.000 1.500 162 1.350 1.350 1.500 163 1.000 1.000 1.500 164 1.350 1.350 0.900 165 1.000 1.000 1.500 166 1.350 1.350 1.500 166 1.350 1.350 1.500				1.500												
162 1.350 1.350 163 1.000 1.000 1.500 164 1.350 1.350 1.500 165 1.000 1.000 1.500 166 1.350 1.350 1.500 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 100 1.000 1.000 1.000 1				1.500				1.500							0.900	
163 1.000 1.500 1.500 0.900 164 1.350 1.350 1.500 0.900 165 1.000 1.000 1.500 0.900 166 1.350 1.350 1.500 0.900																
164 1.350 1.350 1.500 0.900 165 1.000 1.000 1.500 0.900 166 1.350 1.350 1.500 0.900				1 500												
165 1.000 1.000 1.500 0.900 166 1.350 1.350 1.500 0.900																
166 1.350 1.350 1.500 0.900	-			230	1.500											
167 1.000 1.500 1.500 1.500 0.900	166	1.350	1.350		1.500											0.900
	167	1.000	1.000	1.500	1.500											0.900

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Comb.	PP	CM	Qa	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
168	1.350	1.350	1.500	1.500											0.900
169	1.000	1.000			1.500										0.900
170	1.350	1.350			1.500										0.900
171	1.000	1.000	1.500		1.500										0.900
172	1.350	1.350	1.500		1.500										0.900
173	1.000	1.000				1.500									0.900
174	1.350	1.350				1.500									0.900
175	1.000	1.000	1.500			1.500									0.900
176	1.350	1.350	1.500			1.500									0.900
177	1.000	1.000					1.500								0.900
178	1.350	1.350					1.500								0.900
179	1.000	1.000	1.500				1.500								0.900
180	1.350	1.350	1.500				1.500								0.900

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

■ E.L.U. de rotura. Hormigón en cimentaciones

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

1																
3				Qa	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
1		_														
S																
6			_	1.600	1.600											
S																
Section 1,000 1,																
100 1,000				1.600	1.600	1.600										
12		_														
133 1000 1			_													
14			_	1.600		1.600	1.600									
16	14	1.600	_				1.600									
137 1000 1																
190 1000 1				1.600			1.000	1.600								
200 1.000			_													
221 1.000 1.000			_													
224 1.000				1.000				1.000	1.600							
24 1.600			_													
28																
228 1.000				1.000	1.600											
280 1.000 1.000 1.000 1.000 1.000 0.946				4 /00												
1000 1000 1000 1600			_													
33						1.600										
33 1.000 1.000 1.000 1.000 1.000 0.940			_	4 / 00												
33 1.000 1.000			_													
35							1.600									
38 1.600 1.600 1.600 1.600 0.960				1 (00												
38																
39 1.000 1.000 1.600								1.600								
40			_	1 400												
42 1,600																
43 1,000 1,000 1,600 1,600 1,600 0,960		_	_													
44		-		1 600												
46																
47 1,000 1,000 1,600																
48			_	1 600												
S0																
51 1.000 1.000 1.600 1.600 0.960 0.960 52 1.600 1.600 0.960 0.960 0.960 53 1.000 1.600 0.960 0.960 0.960 54 1.600 1.600 0.960 0.960 0.960 55 1.000 1.000 1.600 0.960 0.960 56 1.600 1.600 0.960 0.960 0.960 57 1.000 1.600 1.600 0.960 0.960 58 1.600 1.600 0.960 0.960 0.960 58 1.600 1.600 0.960 0.960 0.960 60 1.600 1.600 0.960 0.960 0.960 61 1.000 1.600 0.960 0.960 0.960 0.960 62 1.600 1.600 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960 0.960			_													
S2				1.600												
54 1.600 1.600 1.600 0.960 0.																
55 1.000 1.600 1.600 1.600 0.960 56 1.600 1.600 0.960 0.960 57 1.000 1.600 0.960 0.960 58 1.600 1.600 0.960 0.960 59 1.000 1.600 0.960 0.960 60 1.600 1.600 0.960 0.960 61 1.000 1.600 0.960 0.960 62 1.600 1.600 0.960 0.960 63 1.000 1.600 0.960 0.960 64 1.600 1.600 0.960 0.960 65 1.000 1.600 0.960 0.960 66 1.600 1.600 0.960 0.960 68 1.600 1.600 0.960 0.960 69 1.000 1.600 0.960 0.960 70 1.600 1.600 0.960 0.960 72 1.600																
S6			_	1.600												
58 1.600 1.600 0.960 59 1.000 1.600 0.960 60 1.600 1.600 0.960 61 1.000 1.600 0.960 62 1.600 1.600 0.960 63 1.000 1.600 0.960 64 1.600 1.600 0.960 65 1.000 1.600 0.960 66 1.600 1.600 0.960 66 1.600 1.600 0.960 67 1.000 1.600 0.960 68 1.600 1.600 0.960 68 1.600 1.600 0.960 70 1.600 1.600 0.960 71 1.000 1.600 1.600 72 1.600 1.600 0.960 72 1.600 1.600 0.960 73 1.000 1.600 1.600 75 1.000 1.600 0.960	56	1.600	1.600							0.960						
1,000			_													
60 1.600 1.600 1.600 0.960 61 1.000 1.000 1.600 1.600 62 1.600 1.600 1.600 1.600 63 1.000 1.600 0.960 1.600 64 1.600 1.600 0.960 1.600 65 1.000 1.000 1.600 0.960 66 1.600 1.600 0.960 1.600 67 1.000 1.000 1.600 0.960 1.600 68 1.600 1.600 0.960 1.600 0.960 1.600 70 1.600 1.600 0.960 0.960 1.600 1.600 0.960 1.600 1.600 0.960 1.600 1.600 0.960 1.600 1.600 0.960 1.600 0.960 1.600 0.960 1.600 0.960 1.600 0.960 1.600 0.960 1.600 0.960 1.600 0.960 1.600 0.960 1.600				1.600												
62 1.600 1.600 1.600 63 1.000 1.000 1.600 64 1.600 1.600 0.960 65 1.000 1.000 0.960 66 1.600 1.600 0.960 67 1.000 1.600 1.600 68 1.600 1.600 1.600 69 1.000 1.600 1.600 70 1.600 1.600 1.600 71 1.000 1.600 1.600 72 1.600 1.600 1.600 72 1.600 1.600 1.600 73 1.000 1.000 1.600 74 1.600 1.600 1.600 75 1.000 1.600 1.600 76 1.600 1.600 0.960 75 1.000 1.600 0.960 77 1.000 1.600 0.960 75 1.000 1.600 0.960	60	1.600	1.600													
63 1.000 1.600 1.600 0.960 64 1.600 1.600 0.960 0.960 65 1.000 1.600 0.960 0.960 66 1.600 1.600 0.960 0.960 67 1.000 1.600 1.600 0.960 68 1.600 1.600 1.600 0.960 69 1.000 1.000 1.600 0.960 70 1.600 1.600 1.600 0.960 71 1.000 1.600 1.600 0.960 72 1.600 1.600 1.600 0.960 73 1.000 1.600 1.600 0.960 74 1.600 1.600 0.960 75 1.000 1.600 1.600 0.960 76 1.600 1.600 0.960 79 1.000 1.600 0.960 79 1.000 1.600 0.960 80 <td< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			_													
65 1.000 1.600 1.600 0.960 66 1.600 1.600 0.960 0.960 67 1.000 1.600 0.960 0.960 68 1.600 1.600 0.960 0.960 69 1.000 1.600 0.960 0.960 70 1.600 1.600 0.960 0.960 71 1.000 1.000 1.600 0.960 71 1.600 1.600 0.960 0.960 72 1.600 1.600 0.960 0.960 73 1.000 1.600 0.960 0.960 74 1.600 1.600 0.960 0.960 75 1.000 1.600 1.600 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.000 0.960 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600			_	1.600												
66 1.600 1.600 1.600 0.960 67 1.000 1.600 1.600 0.960 68 1.600 1.600 0.960 0.960 69 1.000 1.000 0.960 0.960 70 1.600 1.600 0.960 0.960 71 1.000 1.600 0.960 0.960 72 1.600 1.600 0.960 0.960 73 1.000 1.000 0.960 0.960 74 1.600 1.600 0.960 0.960 75 1.000 1.600 1.600 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.000 1.600 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 81 1.600 1.600 0.960 0.960 82 1.600 1.600		_		1.600												
67 1.000 1.600 1.600 1.600 0.960 68 1.600 1.600 1.600 0.960 0.960 69 1.000 1.000 0.960 0.960 0.960 70 1.600 1.600 0.960 0.960 0.960 71 1.000 1.600 1.600 0.960 0.960 0.960 72 1.600 1.600 0.960		_	_													
69 1.000 1.000 1.600 0.960 70 1.600 1.600 0.960 0.960 71 1.000 1.600 1.600 0.960 72 1.600 1.600 0.960 0.960 73 1.000 1.000 0.960 0.960 74 1.600 1.600 0.960 0.960 75 1.000 1.600 1.600 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.000 0.960 0.960 78 1.600 1.600 0.960 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 81 1.000 1.600 0.960 0.960 82 1.600 1.600 0.960 0.960	67	1.000	1.000		1.600						0.960					
70 1.600 1.600 0.960 71 1.000 1.000 1.600 0.960 72 1.600 1.600 1.600 0.960 73 1.000 1.000 0.960 0.960 74 1.600 1.600 0.960 0.960 75 1.000 1.000 1.600 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.000 0.960 0.960 78 1.600 1.600 0.960 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 81 1.000 1.600 0.960 0.960 82 1.600 1.600 1.600 0.960				1.600	1.600	4										
71 1.000 1.600 1.600 0.960 72 1.600 1.600 0.960 0.960 73 1.000 1.000 0.960 0.960 74 1.600 1.600 0.960 0.960 75 1.000 1.600 0.960 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.600 0.960 0.960 78 1.600 1.600 0.960 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 81 1.600 1.600 0.960 0.960 81 1.600 1.600 0.960 0.960 82 1.600 1.600 0.960 0.960			_													
73 1.000 1.000 1.600 0.960 74 1.600 1.600 0.960 0.960 75 1.000 1.600 0.960 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.000 0.960 0.960 78 1.600 1.600 0.960 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 81 1.000 1.600 0.960 0.960 82 1.600 1.600 0.960 0.960	71	1.000	_			1.600					0.960					
74 1.600 1.600 0.960 75 1.000 1.600 0.960 76 1.600 1.600 0.960 77 1.000 1.000 0.960 78 1.600 1.600 0.960 79 1.000 1.600 0.960 80 1.600 1.600 0.960 80 1.600 1.600 0.960 81 1.000 1.000 0.960 82 1.600 1.600 1.600			_	1.600		1.600	1 (00									
75 1.000 1.600 1.600 0.960 76 1.600 1.600 0.960 0.960 77 1.000 1.000 0.960 0.960 78 1.600 1.600 0.960 0.960 79 1.000 1.600 0.960 0.960 80 1.600 1.600 0.960 0.960 81 1.000 1.000 0.960 0.960 82 1.600 1.600 0.960 1.600		_	_													
77 1.000 1.000 0.960 78 1.600 1.600 0.960 79 1.000 1.600 0.960 80 1.600 1.600 0.960 81 1.000 1.000 0.960 82 1.600 1.600 1.600	75	1.000	1.000				1.600				0.960					
78 1.600 1.600 0.960 79 1.000 1.600 0.960 80 1.600 1.600 0.960 81 1.000 1.600 0.960 82 1.600 1.600 1.600				1.600			1.600	1 400								
79 1.000 1.600 1.600 0.960 80 1.600 1.600 0.960 0.960 81 1.000 1.000 1.600 1.600 82 1.600 1.600 1.600 1.600			_													
81 1.000 1.000	79	1.000	1.000					1.600			0.960					
82 1.600 1.600 1.600		_		1.600				1.600			0.960	1 600				
	83	1.000	1.000	1.600								0.960				

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

			_										I	I	
Comb. 84	PP 1.600	CM 1.600	Qa 1.600	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc) 0.960	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
85	1.000	1.000	1.000	1.600							0.960				
86	1.600	1.600		1.600							0.960				
87	1.000	1.000	1.600	1.600							0.960				
88	1.600	1.600	1.600	1.600	4 / 00						0.960				
89 90	1.000	1.000			1.600						0.960				
91	1.000	1.000	1.600		1.600						0.960				
92	1.600	1.600	1.600		1.600						0.960				
93	1.000	1.000				1.600					0.960				
94	1.600	1.600				1.600					0.960				
95 96	1.000	1.000	1.600			1.600					0.960				
97	1.000	1.000	1.000			1.000	1.600				0.960				
98	1.600	1.600					1.600				0.960				
99	1.000	1.000	1.600				1.600				0.960				
100	1.600	1.600	1.600				1.600				0.960	4.400			
101 102	1.000	1.000										1.600			
103	1.000	1.000	1.600									0.960			
104	1.600	1.600	1.600									0.960			
105	1.000	1.000		1.600								0.960			
106	1.600	1.600	1 (00	1.600								0.960			
107 108	1.000	1.000	1.600	1.600								0.960			
109	1.000	1.000	1.000	1.000	1.600							0.960			
110	1.600	1.600			1.600							0.960			
111	1.000	1.000	1.600		1.600							0.960			
112	1.600	1.600	1.600		1.600							0.960			
113 114	1.000	1.000				1.600						0.960			
115	1.000	1.000	1.600			1.600						0.960			
116	1.600	1.600	1.600			1.600						0.960			
117	1.000	1.000					1.600					0.960			
118	1.600	1.600					1.600					0.960			
119	1.000	1.000	1.600				1.600					0.960			
120 121	1.000	1.000	1.600				1.600					0.960	1.600		
122	1.600	1.600											1.600		
123	1.000	1.000	1.600										0.960		
124	1.600	1.600	1.600										0.960		
125 126	1.000	1.000		1.600									0.960 0.960		
127	1.000	1.600	1.600	1.600									0.960		
128	1.600	1.600	1.600	1.600									0.960		
129	1.000	1.000			1.600								0.960		
130	1.600	1.600			1.600								0.960		
131	1.000	1.000	1.600		1.600								0.960		
132 133	1.600	1.600	1.600		1.600	1.600							0.960		
134	1.600	1.600				1.600							0.960		
135	1.000	1.000	1.600			1.600							0.960		
136	1.600	1.600	1.600			1.600							0.960		
137	1.000	1.000					1.600						0.960		
138 139	1.600	1.600	1.600				1.600						0.960		
140	1.600	1.600	1.600				1.600						0.960		
141	1.000	1.000												1.600	
142	1.600	1.600	4											1.600	
143 144	1.000	1.000	1.600											0.960	
144	1.600	1.600	1.000	1.600										0.960	
146	1.600	1.600		1.600										0.960	
147	1.000	1.000	1.600	1.600										0.960	
148	1.600	1.600	1.600	1.600										0.960	
149 150	1.000	1.000			1.600									0.960	
150	1.000	1.000	1.600		1.600									0.960	
152	1.600	1.600	1.600		1.600									0.960	
153	1.000	1.000				1.600								0.960	
154	1.600	1.600				1.600								0.960	
155	1.000	1.000	1.600			1.600								0.960	
156 157	1.600	1.600	1.600			1.600	1.600							0.960	
158	1.600	1.600					1.600							0.960	
159	1.000	1.000	1.600				1.600							0.960	
160	1.600	1.600	1.600				1.600							0.960	
161	1.000	1.000													1.600
162 163	1.600	1.600	1.600												1.600 0.960
164	1.600	1.600	1.600												0.960
165	1.000	1.000		1.600											0.960
166	1.600	1.600		1.600											0.960
167	1.000	1.000	1.600	1.600											0.960

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Comb.	PP	CM	Qa	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
168	1.600	1.600	1.600	1.600											0.960
169	1.000	1.000			1.600										0.960
170	1.600	1.600			1.600										0.960
171	1.000	1.000	1.600		1.600										0.960
172	1.600	1.600	1.600		1.600										0.960
173	1.000	1.000				1.600									0.960
174	1.600	1.600				1.600									0.960
175	1.000	1.000	1.600			1.600									0.960
176	1.600	1.600	1.600			1.600									0.960
177	1.000	1.000					1.600								0.960
178	1.600	1.600					1.600								0.960
179	1.000	1.000	1.600				1.600								0.960
180	1.600	1.600	1.600				1.600								0.960

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

- Tensiones sobre el terreno
- Desplazamientos

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Comb.	PP	CM	Qa	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
1	1.000	1.000	1 000												
3	1.000	1.000	1.000	1.000											
4	1.000	1.000	1.000	1.000											
5	1.000	1.000	1.000		1.000										
7	1.000	1.000	1.000		1.000	1.000									
8	1.000	1.000	1.000			1.000									
9	1.000	1.000					1.000								
10	1.000	1.000	1.000				1.000	1.000							
12	1.000	1.000	1.000					1.000							
13	1.000	1.000		1.000				1.000							
14	1.000	1.000	1.000	1.000	1.000			1.000							
15 16	1.000	1.000	1.000		1.000			1.000							
17	1.000	1.000				1.000		1.000							
18	1.000	1.000	1.000			1.000		1.000							
19 20	1.000	1.000	1.000				1.000	1.000							
21	1.000	1.000	1.000				1.000	1.000	1.000						
22	1.000	1.000	1.000						1.000						
23	1.000	1.000	1 000	1.000					1.000						
25	1.000	1.000	1.000	1.000	1.000				1.000						
26	1.000	1.000	1.000		1.000				1.000						
27	1.000	1.000	1.000			1.000			1.000						
28 29	1.000	1.000	1.000			1.000	1.000		1.000						
30	1.000	1.000	1.000				1.000		1.000						
31	1.000	1.000								1.000					
32 33	1.000	1.000	1.000	1.000						1.000					
34	1.000	1.000	1.000	1.000						1.000					
35	1.000	1.000			1.000					1.000					
36	1.000	1.000	1.000		1.000					1.000					
37 38	1.000	1.000	1.000			1.000				1.000					
39	1.000	1.000	1.000			1.000	1.000			1.000					
40	1.000	1.000	1.000				1.000			1.000					
41	1.000	1.000	1.000								1.000				
43	1.000	1.000	1.000	1.000							1.000				
44	1.000	1.000	1.000	1.000							1.000				
45	1.000	1.000	1 000		1.000						1.000				
46 47	1.000	1.000	1.000		1.000	1.000					1.000				
48	1.000	1.000	1.000			1.000					1.000				
49	1.000	1.000					1.000				1.000				
50 51	1.000	1.000	1.000				1.000				1.000	1.000			
52	1.000	1.000	1.000									1.000			
53	1.000	1.000		1.000								1.000			
54 55	1.000	1.000	1.000	1.000	1.000							1.000			
56	1.000	1.000	1.000		1.000							1.000			
57	1.000	1.000				1.000						1.000			
58 59	1.000	1.000	1.000			1.000	1.000					1.000			
60	1.000	1.000	1.000				1.000					1.000			
61	1.000	1.000											1.000		
62	1.000	1.000	1.000	1.000									1.000		
64	1.000	1.000	1.000	1.000									1.000		
65	1.000	1.000			1.000								1.000		
66	1.000	1.000	1.000		1.000	1.000							1.000		
67 68	1.000	1.000	1.000			1.000							1.000		
69	1.000	1.000					1.000						1.000		
70	1.000	1.000	1.000				1.000						1.000		
71 72	1.000	1.000	1.000											1.000	
73	1.000	1.000	1.000	1.000										1.000	
74	1.000	1.000	1.000	1.000										1.000	
75 76	1.000	1.000	1.000		1.000									1.000	
77	1.000	1.000	1.000		1.000	1.000								1.000	
78	1.000	1.000	1.000			1.000								1.000	
79	1.000	1.000	4 000				1.000							1.000	
80 81	1.000	1.000	1.000				1.000							1.000	1.000
82	1.000	1.000	1.000												1.000
83	1.000	1.000		1.000											1.000

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Comb.	PP	CM	Qa	Q 1 (1)	Q 1 (2)	Q 1 (3)	Q 1 (4)	V(+X exc.+)	V(+X exc)	V(-X exc.+)	V(-X exc)	V(+Y exc.+)	V(+Y exc)	V(-Y exc.+)	V(-Y exc)
84	1.000	1.000	1.000	1.000											1.000
85	1.000	1.000			1.000										1.000
86	1.000	1.000	1.000		1.000										1.000
87	1.000	1.000				1.000									1.000
88	1.000	1.000	1.000			1.000									1.000
89	1.000	1.000					1.000								1.000
90	1.000	1.000	1.000				1.000								1.000

7.- DATOS GEOMÉTRICOS DE GRUPOS Y PLANTAS

Grupo	Nombre del grupo	Planta	Nombre planta	Altura	Cota
2	Forjado 2	2	Forjado 2	1.10	4.50
1	Forjado 1	1	Forjado 1	3.55	3.40
0	Cimentación				-0.15

8.- DATOS GEOMÉTRICOS DE PILARES, PANTALLAS Y MUROS

8.1.- Pilares

GI: grupo inicial GF: grupo final

Ang: ángulo del pilar en grados sexagesimales

Datos de los pilares

Referencia	Coord(P.Fijo)	GI- GF	Vinculación exterior	Ang.	Punto fijo	Canto de apoyo
P1	(-0.00, 0.00)	0-2	Con vinculación exterior	0.0	Esq. inf. izq.	0.50
P2	(5.10, -0.00)	0-2	Con vinculación exterior	0.0	Esq. inf. der.	0.50
P3	(10.20, -0.00)	0-1	Con vinculación exterior	0.0	Esq. inf. der.	0.50
P4	(13.75, -0.00)	0-1	Con vinculación exterior	0.0	Esq. inf. der.	0.50
P5	(0.00, 4.40)	0-2	Con vinculación exterior	0.0	Mitad izquierda	0.50
P6	(5.10, 4.40)	0-2	Con vinculación exterior	0.0	Mitad derecha	0.50
P7	(10.20, 4.55)	0-1	Con vinculación exterior	0.0	Esq. sup. der.	0.50
P8	(13.75, 4.55)	0-1	Con vinculación exterior	0.0	Esq. sup. der.	0.50
P9	(-0.00, 8.80)	0-2	Con vinculación exterior	0.0	Esq. sup. izq.	0.50
P10	(5.10, 8.80)	0-2	Con vinculación exterior	0.0	Esq. sup. der.	0.50
P11	(10.20, 8.80)	0-1	Con vinculación exterior	0.0	Esq. sup. der.	0.50
P12	(13.75, 8.80)	0-1	Con vinculación exterior	0.0	Esq. sup. der.	0.50

9.- DIMENSIONES, COEFICIENTES DE EMPOTRAMIENTO Y COEFICIENTES DE PANDEO PARA CADA PLANTA

Pilar	Planta	Dimensiones	Coeficiente de er	mpotramiento	Coeficiente	de pandeo	Coeficiente de rigidez axil
Filal	Platita	(cm)	Cabeza	Pie	X	Υ	Coefficiente de rigidez axii
P1, P2, P5, P6, P9,	2	30x30	0.30	1.00	1.00	1.00	2.00
P10	1	30x30	1.00	1.00	1.00	1.00	2.00
P3, P4, P7, P8, P11, P12	1	30x30	0.30	1.00	1.00	1.00	2.00

10.- LISTADO DE PAÑOS

Tipos de forjados considerados

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Nombre	Descripción
FORJADO 25+5	FORJADO DE VIGUETAS PRETENSADAS Fabricante: VIGUETAS VAPORPESA TIPO T-12 Tipo de bovedilla: De hormigón Canto del forjado: 30 = 25 + 5 (cm) Intereje: 70 cm (simple) y 81 cm (doble) Hormigón obra: HA-25, YC=1.5 Hormigones viguetas: HA-40, YC=1.5 Acero pretensar: Y 1860 C Aceros negativos: B 500 S, Ys=1.15 Peso propio: 3.82 kN/m² (simple) y 4.30 kN/m² (doble)
FORJADO 30+5	FORJADO DE VIGUETAS PRETENSADAS Fabricante: VIGUETAS VAPORPESA TIPO T-12 Tipo de bovedilla: De hormigón Canto del forjado: 35 = 30 + 5 (cm) Intereje: 70 cm (simple) y 81 cm (doble) Hormigón obra: HA-25, Yc=1.5 Hormigones viguetas: HA-40, Yc=1.5 Acero pretensar: Y 1860 C Aceros negativos: B 500 S, Ys=1.15 Peso propio: 4.36 kN/m² (simple) y 4.93 kN/m² (doble)

Grupo	Tipo	Coordenadas del centro del paño			
Forjado 1	FORJADO 25+5	En todos los paños			
Forjado 2	FORJADO 30+5	En todos los paños			

10.1.- Autorización de uso

Datos del forjado

VIGUETAS VAPORPESA TIPO T-12 Fabricante:

Tipo de bovedilla: De hormigón Canto del forjado: 30 = 25 + 5 (cm)

Intereje: 70 cm (simple) y 81 cm (doble)

Hormigón obra: HA-25, YC=1.5 Hormigones viguetas: HA-40, Yc=1.5 Y 1860 C Acero pretensar: B 500 S, Ys=1.15 Aceros negativos:

Peso propio: 3.82 kN/m² (simple) y 4.30 kN/m² (doble)

Flexión positiva - Viguetas simples											
Tipo de		mento J·m/m)	Rigidez (m².kN/m)		Momento de servicio (kN·m/m)			Cortante último			
vigueta	Último	Fisuración	Total	Fisurada	Clase I	Clase II	Clase III	(kN/m)			
T-12 - 03-S	19.61	15.30	19326	893	13.17	18.69	21.50	58.58			
T-12 - 04-S	26.63	20.77	19492	1236	21.60	27.22	30.10	58.58			
T-12 - 05-S	33.42	26.07	19640	1530	27.91	33.60	36.49	58.58			
T-12 - 06-S	40.17	31.33	19777	1834	34.30	40.06	43.02	58.58			
T-12 - 07-S	46.67	36.40	19914	2119	39.95	45.78	48.76	58.58			
T-12 - 08-S	53.44	41.69	20061	2403	46.24	52.17	55.19	58.58			
T-12 - 10-S	65.38	51.00	20287	2874	52.89	58.95	62.04	58.58			

Notas:
Clase I: Ambiente agresivo
" Ambiente exterior Clase II: Ambiente exterior Clase III: Ambiente interior Esfuerzos por metro de ancho

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Flexión negativa - Viguetas simples										
Refuerzo superior por	Área del		nto último ·m/m)	Momento de fisuración	Rigidez (m²·kN/m)					
nervio	(cm²)	Sección Sección tipo macizada		(kN·m/m)	Total	Fisurada				
1Ø6+1Ø8	0.79	12.94	13.24	32.47	38553	2717				
2Ø8	1.01	16.44	16.95	32.62	38602	3326				
1Ø8+1Ø10	1.29	20.97	21.82	32.80	38661	4110				
2Ø10	1.57	25.24	26.49	32.98	38710	4807				
1Ø10+1Ø12	1.92	30.42	32.30	33.21	38779	5631				
2Ø12	2.26	35.27	37.92	33.42	38848	6377				
1Ø8+1Ø16	2.51	38.71	42.03	33.58	38897	6887				
1Ø10+1Ø16	2.80	42.58	46.76	33.76	38956	7465				
1Ø12+1Ø16	3.14	46.93	52.30	33.97	39014	8103				
3Ø12	3.39	50.01	56.34	34.13	39063	8545				
2Ø10+1Ø16	3.58	52.29	59.41	34.25	39103	8878				
2Ø16	4.02	56.81	66.46	34.51	39181	9604				
2Ø12+1Ø16	4.27	56.81	70.45	34.67	39220	9996				
1Ø8+2Ø16	4.52	56.81	74.41	34.83	39269	10369				
1Ø10+2Ø16	4.81	56.81	78.99	35.00	39318	10791				
1Ø12+2Ø16	5.15	56.81	84.34	35.21	39377	11282				
3Ø16	6.03	56.81	98.01	35.74	39524	13852				
2Ø16+1Ø20	7.16	56.81	115.25	36.40	39711	15461				
1Ø16+2Ø20	8.29	56.81	132.14	37.07	39887	16912				
3Ø20	9.42	56.81	148.67	37.72	40054	18217				
Notas: Esfuerzos por m	netro de ancho									

Flexión positiva - Viguetas dobles											
Tipo de		Momento (kN·m/m)		Rigidez (m²·kN/m)		Momento de servicio (kN·m/m)					
vigueta	Último	Fisuración	Total	Fisurada	Clase I	Clase II	Clase III	(kN/m)			
T-12 - 03-D	33.50	26.13	27203	1501	21.71	30.81	35.46	120.23			
T-12 - 04-D	45.59	35.56	27439	2060	35.60	44.87	49.60	120.23			
T-12 - 05-D	57.35	44.73	27635	2560	46.19	55.60	60.40	120.23			
T-12 - 06-D	68.80	53.66	27831	3041	56.44	65.94	70.79	120.23			
T-12 - 07-D	79.87	62.30	28017	3502	66.01	75.65	80.58	120.23			
T-12 - 08-D	90.56	70.63	28214	3963	75.99	85.73	90.70	120.23			
T-12 - 10-D	110.32	86.05	28508	4728	86.80	96.75	101.81	120.23			

Notas:

Clase I: Ambiente agresivo
Clase II: Ambiente exterior
Clase III: Ambiente interior
Esfuerzos por metro de ancho

Flexión negativa - Viguetas dobles											
Refuerzo	Área del		nto último ·m/m)	Momento de fisuración	Rigidez (m².kN/m)						
superior por nervio	nervio (cm²)	Sección tipo	Sección macizada	(kN·m/m)	Total	Fisurada					
1Ø6+1Ø8	0.79	11.35	11.49	35.87	54347	2443					
2Ø8	1.01	14.49	14.72	35.99	54426	3218					
1Ø8+1Ø10	1.29	18.59	18.96	36.18	54524	3983					
2Ø10	1.57	22.50	23.06	36.35	54622	4709					
1Ø10+1Ø12	1.92	27.33	28.16	36.56	54750	5582					
2Ø12	2.26	31.95	33.12	36.78	54867	6367					

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

	Flexión negativa - Viguetas dobles										
Refuerzo superior por	Área del nervio		nto último ·m/m)	Momento de fisuración	Rigidez (m².kN/m)						
nervio	(cm²)	Sección tipo	Sección macizada	(kN·m/m)	Total	Fisurada					
1Ø8+1Ø16	2.51	35.31	36.75	36.92	54946	6936					
1Ø10+1Ø16	2.80	39.16	40.95	37.10	55044	7583					
1Ø12+1Ø16	3.14	43.62	45.87	37.31	55162	8309					
3Ø12	3.39	46.85	49.47	37.46	55240	8829					
2Ø10+1Ø16	3.58	49.29	52.21	37.58	55309	9212					
2Ø16	4.02	54.83	58.54	37.85	55446	10075					
2Ø12+1Ø16	4.27	57.91	62.13	37.99	55525	10556					
1Ø8+2Ø16	4.52	60.95	65.70	38.15	55613	11017					
1Ø10+2Ø16	4.81	64.42	69.85	38.32	55701	11537					
1Ø12+2Ø16	5.15	68.41	74.69	38.52	55809	12135					
3Ø16	6.03	78.38	87.18	39.05	56084	13606					
2Ø16+1Ø20	7.16	90.37	103.09	39.72	56427	15343					
1Ø16+2Ø20	8.29	98.19	118.88	40.39	56761	16932					
3Ø20	9.42	98.19	134.53	41.18	57075	18404					
Notas: Esfuerzos por m	netro de ancho										

Datos del forjado

Fabricante: VIGUETAS VAPORPESA TIPO T-12

Tipo de bovedilla: De hormigón Canto del forjado: 35 = 30 + 5 (cm)

Intereje: 70 cm (simple) y 81 cm (doble)

Hormigón obra: HA-25, Yc=1.5 Hormigones viguetas: HA-40, Yc=1.5 Acero pretensar: Y 1860 C Aceros negativos: B 500 S, Ys=1.15

4.36 kN/m² (simple) y 4.93 kN/m² (doble) Peso propio:

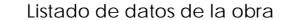
	Flexión positiva - Viguetas simples											
Tipo de	_	Momento (kN·m/m)		Rigidez (m².kN/m)		Momento de servicio (kN·m/m)						
vigueta	Último	Fisuración	Total	Fisurada	Clase I	Clase II	Clase III	(kN/m)				
T-12 - 03-S	23.55	18.37	30539	1275	16.48	23.39	26.92	68.35				
T-12 - 04-S	31.99	24.95	30774	1756	27.01	34.03	37.62	68.35				
T-12 - 05-S	39.82	31.06	30970	2178	35.02	42.15	45.79	68.35				
T-12 - 06-S	47.97	37.42	31166	2600	42.83	50.04	53.72	68.35				
T-12 - 07-S	55.62	43.39	31363	3012	50.08	57.40	61.13	68.35				
T-12 - 08-S	63.64	49.64	31559	3424	57.70	65.09	68.87	68.35				
T-12 - 10-S	78.19	60.98	31883	4120	65.97	73.53	77.38	68.35				

Notas: Clase I: Ambiente agresivo Clase II: Ambiente exterior Clase III: Ambiente interior Esfuerzos por metro de ancho

Flexión negativa - Viguetas simples										
Refuerzo	Área del	Momento último (kN·m/m)		Momento de	Rigidez (m².kN/m)					
superior por nervio	nervio (cm²)	Sección tipo	Sección macizada	fisuración (kN·m/m)	Total	Fisurada				
1Ø6+1Ø8	0.79	15.36	15.67	45.52	61057	3816				
2Ø8	1.01	19.55	20.06	45.70	61116	4709				

Listado de datos de la obra

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL


Fecha: 04/07/16

	FI	exión negati	va - Viguetas si	mples			
Refuerzo superior por	Área del		nto último ·m/m)	Momento de fisuración		gidez kN/m)	
nervio	(cm²)	Sección tipo	Sección macizada	(kN·m/m)	Total	Fisurada	
1Ø8+1Ø10	1.29	24.09	25.83	45.96	61205	5827	
2Ø10	1.57	30.12	31.37	46.21	61283	6838	
1Ø10+1Ø12	1.92	36.39	38.27	46.51	61381	8025	
2Ø12	2.26	42.29	44.94	46.79	61479	9104	
1Ø8+1Ø16	2.51	46.51	49.82	47.01	61548	9859	
1Ø10+1Ø16	2.80	51.28	55.47	47.26	61626	10703	
1Ø12+1Ø16	3.14	56.68	62.06	47.55	61715	11635	
3Ø12	3.39	60.55	66.87	47.76	61783	12292	
2Ø10+1Ø16	3.58	63.41	70.53	47.92	61832	12773	
2Ø16	4.02	69.83	79.30	48.29	61950	13852	
2Ø12+1Ø16	4.27	69.95	83.72	48.51	62019	15784	
1Ø8+2Ø16	4.52	69.95	88.46	48.72	62078	16451	
1Ø10+2Ø16	4.81	69.95	93.94	48.96	62156	17187	
1Ø12+2Ø16	5.15	69.95	100.34	49.25	62235	18070	
3Ø16	6.03	69.95	116.75	49.97	62450	20169	
2Ø16+1Ø20	7.16	69.95	137.50	50.89	62715	22543	
1Ø16+2Ø20	8.29	69.95	157.90	51.81	62970	24682	
3Ø20	9.42	69.95	177.94	52.71	63216	26624	
Notas: Esfuerzos por n	Notas: Esfuerzos por metro de ancho						

	Flexión positiva - Viguetas dobles							
Tipo de		mento I·m/m)	Rigidez (m²-kN/m)		Momento de servicio (kN·m/m)			Cortante último
vigueta	Último	Fisuración	Total	Fisurada	Clase I	Clase II	Clase III	(kN/m)
T-12 - 03-D	40.22	31.37	42448	2148	27.40	38.90	44.76	140.27
T-12 - 04-D	54.71	42.67	42772	2943	44.69	56.33	62.26	140.27
T-12 - 05-D	68.24	53.23	43046	3649	57.94	69.74	75.76	140.27
T-12 - 06-D	82.19	64.11	43321	4346	71.09	83.06	89.17	140.27
T-12 - 07-D	94.93	74.05	43586	5003	82.73	94.81	100.98	140.27
T-12 - 08-D	108.47	84.61	43861	5670	95.65	107.91	114.16	140.27
T-12 - 10-D	132.96	103.71	44302	6798	109.21	121.72	128.10	140.27

Notas:
Clase I: Ambiente agresivo
Clase II: Ambiente exterior
Clase III: Ambiente interior
Esfuerzos por metro de ancho

	FI	exión negati	va - Viguetas d	obles		
Refuerzo	Área del	(KIN-111/111)		Momento de	Rigidez (m².kN/m)	
superior por nervio	nervio (cm²)	Sección tipo	Sección macizada	fisuración (kN·m/m)	Total	Fisurada
1Ø6+1Ø8	0.79	13.45	13.59	49.45	84915	3610
2Ø8	1.01	17.18	17.40	49.63	85023	4493
1Ø8+1Ø10	1.29	22.05	22.44	49.86	85161	5602
2Ø10	1.57	26.71	27.28	50.08	85298	6632
1Ø10+1Ø12	1.92	32.48	33.32	50.36	85465	7868
2Ø12	2.26	38.02	39.18	50.63	85631	9015
1Ø8+1Ø16	2.51	42.05	43.49	50.84	85749	9849
1Ø10+1Ø16	2.80	46.69	48.47	51.06	85887	10771

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

	FI	exión negati	va - Viguetas d	obles		
Refuerzo	Áron dol		nto último ·m/m)	Momento de fisuración	Rigidez (m²-kN/m)	
superior por nervio	(cm²)	Socción Socción		Total	Fisurada	
1Ø12+1Ø16	3.14	52.05	54.30	51.34	86044	11811
3Ø12	3.39	55.96	58.58	51.53	86161	12567
2Ø10+1Ø16	3.58	58.90	61.82	51.68	86250	13126
2Ø16	4.02	65.62	69.34	52.02	86446	14381
2Ø12+1Ø16	4.27	69.38	73.59	52.22	86563	15068
1Ø8+2Ø16	4.52	73.08	77.84	52.41	86671	15745
1Ø10+2Ø16	4.81	77.34	82.76	52.64	86799	16510
1Ø12+2Ø16	5.15	82.25	88.53	52.92	86956	17374
3Ø16	6.03	94.58	103.37	53.59	87338	19532
2Ø16+1Ø20	7.16	109.60	122.32	54.47	87819	22082
1Ø16+2Ø20	8.29	120.89	141.15	55.34	88280	26644
3Ø20	9.42	120.89	159.82	56.20	88741	29283
Notas: Esfuerzos por m	Notas: Esfuerzos por metro de ancho					

11.- LOSAS Y ELEMENTOS DE CIMENTACIÓN

- -Tensión admisible en situaciones persistentes: 0.170 MPa
- -Tensión admisible en situaciones accidentales: 0.255 MPa

12.- MATERIALES UTILIZADOS

12.1.- Hormigones

		f _{ck}		Árido		
Elemento	Hormigón	(MPa)	γ_{c}	Naturaleza	Tamaño máximo (mm)	
Vigas y losas de cimentación	HA-25	25	1.50	Cuarcita	15	
Elementos de cimentación	HA-25	25	1.50	Cuarcita	15	
Forjados	HA-25	25	1.50	Cuarcita	15	
Pilares y pantallas	HA-30	30	1.50	Cuarcita	15	
Muros	HA-25	25	1.50	Cuarcita	15	

12.2.- Aceros por elemento y posición

12.2.1.- Aceros en barras

Elemento	Acero	f _{yk} (MPa)	γs
Todos	B 500 S	500	1.15

12.2.2.- Aceros en perfiles

Tipo de acero para perfiles	Acero	Límite elástico (MPa)	Módulo de elasticidad (GPa)
Acero conformado	S235	235	210
Acero laminado	S275	275	210

Apéndice nº 2.- Dimensionamiento de la cimentación

ÍNDICE

1	LISTADO DE ELEMENTOS DE CIMENTACIÓN	2
	1.1 Descripción	2
	1.2 Comprobación	3
2	LISTADO DE VIGAS DE ATADO	21
	2.1 Descripción	21
	2.2 Comprehación	วว

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

1.- LISTADO DE ELEMENTOS DE CIMENTACIÓN

1.1.- Descripción

Referencias	Geometría	Armado
P1, P2, P3, P4	Zapata rectangular excéntrica Ancho inicial X: 65.0 cm Ancho inicial Y: 65.0 cm Ancho final X: 65.0 cm Ancho final Y: 65.0 cm Ancho zapata X: 130.0 cm Ancho zapata Y: 130.0 cm Canto: 50.0 cm	Sup X: 5Ø12c/25 Sup Y: 5Ø12c/25 Inf X: 5Ø12c/25 Inf Y: 5Ø12c/25
P5	Zapata rectangular excéntrica Ancho inicial X: 65.0 cm Ancho inicial Y: 65.0 cm Ancho final X: 65.0 cm Ancho final Y: 65.0 cm Ancho zapata X: 130.0 cm Ancho zapata Y: 130.0 cm Canto: 50.0 cm	Sup X: 5Ø12c/25 Sup Y: 5Ø12c/25 Inf X: 5Ø12c/25 Inf Y: 5Ø12c/25
P6	Zapata rectangular excéntrica Ancho inicial X: 75.0 cm Ancho inicial Y: 75.0 cm Ancho final X: 75.0 cm Ancho final Y: 75.0 cm Ancho zapata X: 150.0 cm Ancho zapata Y: 150.0 cm Canto: 50.0 cm	Sup X: 6Ø12c/25 Sup Y: 6Ø12c/25 Inf X: 6Ø12c/25 Inf Y: 6Ø12c/25
P7	Zapata rectangular excéntrica Ancho inicial X: 75.0 cm Ancho inicial Y: 75.0 cm Ancho final X: 75.0 cm Ancho final Y: 75.0 cm Ancho zapata X: 150.0 cm Ancho zapata Y: 150.0 cm Canto: 50.0 cm	Sup X: 6Ø12c/25 Sup Y: 6Ø12c/25 Inf X: 6Ø12c/25 Inf Y: 6Ø12c/25
P8	Zapata rectangular excéntrica Ancho inicial X: 65.0 cm Ancho inicial Y: 65.0 cm Ancho final X: 65.0 cm Ancho final Y: 65.0 cm Ancho zapata X: 130.0 cm Ancho zapata Y: 130.0 cm Canto: 50.0 cm	Sup X: 5Ø12c/25 Sup Y: 5Ø12c/25 Inf X: 5Ø12c/25 Inf Y: 5Ø12c/25
P9	Zapata rectangular excéntrica Ancho inicial X: 65.0 cm Ancho inicial Y: 65.0 cm Ancho final X: 65.0 cm Ancho final Y: 65.0 cm Ancho zapata X: 130.0 cm Ancho zapata Y: 130.0 cm Canto: 50.0 cm	Sup X: 5Ø12c/25 Sup Y: 5Ø12c/25 Inf X: 5Ø12c/25 Inf Y: 5Ø12c/25
P10	Zapata rectangular excéntrica Ancho inicial X: 65.0 cm Ancho inicial Y: 65.0 cm Ancho final X: 65.0 cm Ancho final Y: 65.0 cm Ancho zapata X: 130.0 cm Ancho zapata Y: 130.0 cm Canto: 50.0 cm	Sup X: 5Ø12c/25 Sup Y: 5Ø12c/25 Inf X: 5Ø12c/25 Inf Y: 5Ø12c/25

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Referencias	Geometría	Armado
P11	Zapata rectangular excéntrica Ancho inicial X: 75.0 cm Ancho inicial Y: 75.0 cm Ancho final X: 75.0 cm Ancho final Y: 75.0 cm Ancho zapata X: 150.0 cm Ancho zapata Y: 150.0 cm Canto: 50.0 cm	Sup X: 6Ø12c/25 Sup Y: 6Ø12c/25 Inf X: 6Ø12c/25 Inf Y: 6Ø12c/25
P12	Zapata rectangular excéntrica Ancho inicial X: 65.0 cm Ancho inicial Y: 65.0 cm Ancho final X: 65.0 cm Ancho final Y: 65.0 cm Ancho zapata X: 130.0 cm Ancho zapata Y: 130.0 cm Canto: 50.0 cm	Sup X: 5Ø12c/25 Sup Y: 5Ø12c/25 Inf X: 5Ø12c/25 Inf Y: 5Ø12c/25

1.2.- Comprobación

Cuantía mínima necesaria por flexión:

- Armado inferior dirección X:

- Armado inferior dirección Y:

Artículo 42.3.2 de la norma EHE-08

Referencia: P1

Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0595467 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.105163 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.123704 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 269.5 %	Cumple
- En dirección Y:	Reserva seguridad: 237.1 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 22.72 kN·m	Cumple
- En dirección Y:	Momento: 20.72 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 10.69 kN	Cumple
- En dirección Y:	Cortante: 9.52 kN	Cumple
Compresión oblicua en la zapata: - Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 277.2 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P1:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
	1	

Cumple

Cumple

Mínimo: 0.0004

Calculado: 0.001

Calculado: 0.001

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P1		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Diámetro mínimo de las barras:	Minima a 12 mana	
Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capitulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
·	Calculado: 25 cm	· ·
- Armado superior dirección Y: Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 18 cm	Cumple
- Armado inf. dirección X hacia der:	Calculado: 21 cm	Cumple
	Calculado: 21 cm	Cumple
 - Armado inf. dirección X hacia izq: - Armado inf. dirección Y hacia arriba: 	Calculado: 21 cm	Cumple
		1
- Armado inf. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
Longitud mínima de las patillas: - Armado inf. dirección X hacia der:	Mínimo: 12 cm Calculado: 15 cm	Cumple
- Armado IIII. dirección X hacia del: - Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado IIII. dirección X hacia izq Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:		Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones		
Referencia: P2		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25	I	I
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.107812 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.12135 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.155489 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		·
- En dirección X:	Reserva seguridad: 739.2 %	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P2		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- En dirección Y:	Reserva seguridad: 379.7 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 31.29 kN⋅m	Cumple
- En dirección Y:	Momento: 36.74 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 13.54 kN	Cumple
- En dirección Y:	Cortante: 16.38 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 560.3 kN/m²	Cumple
Canto mínimo: Articulo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación:	Mínimo: 27 cm	
- P2:	Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado interior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
	Calculado: 0.0009	
- Armado superior dirección Y: Cuantía mínima necesaria por flexión:	Calculado: 0.0009	Cumple
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0005	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0006	Cumple
Diámetro mínimo de las barras: Recomendación del Articulo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras:	Méritas a 20 ans	
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	C
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación".		
Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 18 cm	
- Armado inf. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 21 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple

- Parrilla superior:

Listado de cimentación

LALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Deferencie: DO		
Referencia: P2		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	F
Comprobación	Valores	Estado
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones	<u> </u>	
Referencia: P3		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0762237 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.103692 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.132533 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 348.2 %	Cumple
- En dirección Y:	Reserva seguridad: 317.0 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 26.23 kN·m	Cumple
- En dirección Y:	Momento: 26.21 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 11.97 kN	Cumple
- En dirección Y:	Cortante: 12.07 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 375.4 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P3:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Mínimo: 0.0004	
- Armado inferior dirección X:	Calculado: 0.001	Cumple
- Armado inferior dirección Y:	Calculado: 0.001	Cumple
Diámetro mínimo de las barras: Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple

Cumple

Calculado: 12 mm

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P3		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Separación máxima entre barras: Articulo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Críterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 18 cm	
- Armado inf. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 21 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobacion	nes	
Referencia: P4		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa	C

Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0391419 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.0654327 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.0879957 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 182.4 %	Cumple
- En dirección Y:	Reserva seguridad: 148.0 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 14.22 kN·m	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P4		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- En dirección Y:	Momento: 14.62 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 6.87 kN	Cumple
- En dirección Y:	Cortante: 7.06 kN	Cumple
Compresión oblicua en la zapata: - Situaciones persistentes:	Máximo: 5000 kN/m²	
Criterio de CYPE Ingenieros	Calculado: 150 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P4:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Articulo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:	Calaulada, 0.001	
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	0
- Armado inferior dirección X:	Mínimo: 0.0003	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0003	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras: Recomendación del Articulo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Articulo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación".	Mínimo: 10 cm	
Capitulo 3.16 - Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 18 cm	Cumple
- Armado inf. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado inf. dirección y hacia arriba:	Calculado: 21 cm	Cumple
- Armado inf. dirección y nacia amba: - Armado inf. dirección y hacia abajo:	Calculado: 21 cm	Cumple
- Armado III. dirección Y hacia abajo. - Armado sup. dirección X hacia der:	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 21 cm	Cumple
- Armado sup. dirección Y hacia amba: - Armado sup. dirección Y hacia abajo:	Calculado: 21 cm	Cumple
	Mínimo: 12 cm	Cumple
Longitud mínima de las patillas:		Cumple
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple

- Armado inferior dirección X:

Listado de cimentación

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Referencia: P4		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		T
Comprobación	Valores	Estado
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones		
Referencia: P5		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.105065 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Calculado: 0.137242 MPa Máximo: 0.212485 MPa	Cumple
	Calculado: 0.157745 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 528.5 %	Cumple
- En dirección Y:	Reserva seguridad: 720.7 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 37.31 kN·m	Cumple
- En dirección Y:	Momento: 31.48 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 16.78 kN	Cumple
- En dirección Y:	Cortante: 13.83 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 548.2 kN/m²	Cumple
Canto mínimo:	Mínimo: 25 cm	
Artículo 58.8.1 de la norma EHE-08	Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P5:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHF-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0007	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	2 2
- Armado inferior dirección X:	Mínimo: 0.0006	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0005	Cumple
Diámetro mínimo de las barras:	Mínimo: 12 mm	,p,0
Recomendación del Artículo 58.8.2 (norma EHE-08) - Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior: - Parrilla superior:	Calculado: 12 mm	Cumple Cumple
Separación máxima entre barras:	Calculado. 12 IIIIII	Cumple
Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
A was a all a line familiar a all discovery	LO -11- 0F	1 0

Cumple

Calculado: 25 cm

Referencia: P5

Dimensiones: 130 x 130 x 50

Listado de cimentación

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras:	Calculado. 23 CITI	Campic
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje:	0 4.0 4.4 4.7 2.5 5.11	- Gumpio
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Calculado: 21 cm	
- Armado inf. dirección X hacia der:	Mínimo: 18 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 18 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 18 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Mínimo: 17 cm	Cumple
- Armado sup. dirección X hacia der:	Mínimo: 18 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 18 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 18 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 17 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobacione	S	
Referencia: P6		
Dimensiones: 150 x 150 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.130865 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.138713 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.160295 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 1664.3 %	Cumple
- En dirección Y:	Reserva seguridad: 815.7 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 62.77 kN·m	Cumple
- En dirección Y:	Momento: 64.04 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 49.64 kN	Cumple
		Página 10

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P6		
Dimensiones: 150 x 150 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- En dirección Y:	Cortante: 51.89 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 934.4 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P6:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma FHF-08	Mínimo: 0.0008	
- Armado inferior dirección X:	Calculado: 0.001	Cumple
- Armado inferior dirección Y:	Calculado: 0.001	Cumple
Diámetro mínimo de las barras:	Mínimo: 12 mm	
Recomendación del Artículo 58.8.2 (norma EHE-08)		Cumple
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 28 cm Calculado: 28 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 28 cm Calculado: 28 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 28 cm Calculado: 29 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Mínimo: 27 cm Calculado: 27 cm	Cumple
- Armado sup. dirección X hacia der:	Mínimo: 15 cm Calculado: 28 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 15 cm Calculado: 28 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 29 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 15 cm Calculado: 27 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	<u> </u>
- Armado inf. dirección X hacia der:	Calculado: 12 cm	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P6		
Dimensiones: 150 x 150 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
Se cumplen todas las comprobacione	es	
Referencia: P7		
Dimensiones: 150 x 150 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
	Valores	Estado
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25	Valores	Estado
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno:	Valores Máximo: 0.17 MPa Calculado: 0.12135 MPa	Estado
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno: Criterio de CYPE Ingenieros	Máximo: 0.17 MPa	
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno: Criterio de CYPE Ingenieros - Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.12135 MPa Máximo: 0.212485 MPa	Cumple
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno: Criterio de CYPE Ingenieros - Tensión media en situaciones persistentes: - Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.17 MPa Calculado: 0.12135 MPa Máximo: 0.212485 MPa Calculado: 0.132533 MPa Máximo: 0.212485 MPa	Cumple
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno: Criterio de CYPE Ingenieros - Tensión media en situaciones persistentes: - Tensión máxima en situaciones persistentes sin viento: - Tensión máxima en situaciones persistentes con viento: Wuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad	Máximo: 0.17 MPa Calculado: 0.12135 MPa Máximo: 0.212485 MPa Calculado: 0.132533 MPa Máximo: 0.212485 MPa	Cumple Cumple
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno: Criterio de CYPE Ingenieros - Tensión media en situaciones persistentes: - Tensión máxima en situaciones persistentes sin viento: - Tensión máxima en situaciones persistentes con viento: Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.	Máximo: 0.17 MPa Calculado: 0.12135 MPa Máximo: 0.212485 MPa Calculado: 0.132533 MPa Máximo: 0.212485 MPa Calculado: 0.150878 MPa	Cumple Cumple Cumple
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25 Comprobación Tensiones sobre el terreno: Criterio de CYPE Ingenieros - Tensión media en situaciones persistentes: - Tensión máxima en situaciones persistentes sin viento: - Tensión máxima en situaciones persistentes con viento: Wuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio. - En dirección X:	Máximo: 0.17 MPa Calculado: 0.12135 MPa Máximo: 0.212485 MPa Calculado: 0.132533 MPa Máximo: 0.212485 MPa Calculado: 0.150878 MPa	Cumple Cumple Cumple

- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.132533 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.150878 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 1096.8 %	Cumple
- En dirección Y:	Reserva seguridad: 980.6 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 60.38 kN·m	Cumple
- En dirección Y:	Momento: 58.35 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 48.17 kN	Cumple
- En dirección Y:	Cortante: 46.50 kN	Cumple
Compresión oblicua en la zapata: - Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 859.1 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P7:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0008	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0007	Cumple
Diámetro mínimo de las barras: Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

- Tensión máxima en situaciones persistentes con viento:

Fecha: 04/07/16

Referencia: P7		
Dimensiones: 150 x 150 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 27 cm Calculado: 28 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 15 cm Calculado: 28 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 28 cm Calculado: 28 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Mínimo: 27 cm Calculado: 27 cm	Cumple
- Armado sup. dirección X hacia der:	Mínimo: 15 cm Calculado: 28 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 15 cm Calculado: 28 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 28 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 15 cm Calculado: 27 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	· ·
- Armado inf. dirección X hacia der:	Calculado: 12 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
Se cumplen todas las comprobacion	es	
Referencia: P8		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno:	1 22	
Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0654327 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.0866223 MPa	Cumple
	1	1

Cumple

Máximo: 0.212485 MPa

Calculado: 0.109774 MPa

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P8		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 359.3 %	Cumple
- En dirección Y:	Reserva seguridad: 384.5 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 23.10 kN·m	Cumple
- En dirección Y:	Momento: 20.28 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 11.09 kN	Cumple
- En dirección Y:	Cortante: 9.52 kN	Cumple
Compresión oblicua en la zapata: - Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 313.3 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P8:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Mínimo: 0.0004	
- Armado inferior dirección X:	Calculado: 0.001	Cumple
- Armado inferior dirección Y:	Calculado: 0.001	Cumple
Diámetro mínimo de las barras: Recomendación del Articulo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje:		
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991 - Armado inf. dirección X hacia der:	Mínimo: 18 cm	
- Armado inf. dirección X hacia izq:	Calculado: 21 cm Mínimo: 17 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 20 cm Mínimo: 17 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 20 cm Mínimo: 18 cm	Cumple
Tamada iin dii dada dada	Calculado: 21 cm	Cumple

Referencia: P8

- Armado inferior dirección Y:

Listado de cimentación

LACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Referencia: P8		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- Armado sup. dirección X hacia der:	Mínimo: 18 cm	
	Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 17 cm Calculado: 20 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 17 cm Calculado: 20 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 18 cm Calculado: 21 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones		Cumpic
Referencia: P9		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25	1	I
Comprobación	Valores	Estado
Tensiones sobre el terreno: Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0604296 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.111344 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.130375 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 270.7 %	Cumple
- En dirección Y:	Reserva seguridad: 200.2 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 19.21 kN·m	Cumple
- En dirección Y:	Momento: 20.48 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 6.08 kN	Cumple
- En dirección Y:	Cortante: 7.16 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 278.3 kN/m²	Cumple
Canto mínimo: Articulo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P9:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple

Calculado: 0.0009

LALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P9		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión:	Calculada, 0.001	'
Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0003	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0004	Cumple
Diámetro mínimo de las barras: Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras:		'
Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
·		
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 21 cm Calculado: 24 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 15 cm Calculado: 17 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 17 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Mínimo: 21 cm Calculado: 24 cm	Cumple
- Armado sup. dirección X hacia der:	Mínimo: 21 cm Calculado: 24 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 15 cm Calculado: 17 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 17 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 21 cm Calculado: 24 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	Cumple
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado III. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado IIII. dirección Y hacia abajo.	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia izq Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia ahajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobacion		Jampie

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P10		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno:	Valores	Estado
Criterio de CYPE Ingenieros - Tensión media en situaciones persistentes:	Máximo: 0.17 MPa	
, ,	Calculado: 0.108401 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.126549 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.158137 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 714.1 %	Cumple
- En dirección Y:	Reserva seguridad: 381.4 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 32.63 kN·m	Cumple
- En dirección Y:	Momento: 36.23 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 13.54 kN	Cumple
- En dirección Y:	Cortante: 16.09 kN	Cumple
Compresión oblicua en la zapata:	5000111/	
- Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 564 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P10:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0005	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0006	Cumple
Diámetro mínimo de las barras: Recomendación del Articulo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación".	Mínimo: 10 cm	
Capítulo 3.16 - Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y: - Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P10		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Fat and a
Comprobación	Valores	Estado
- Armado inf. dirección X hacia der:	Mínimo: 18 cm Calculado: 21 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 17 cm Calculado: 20 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 17 cm Calculado: 20 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Mínimo: 18 cm Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia der:	Mínimo: 18 cm Calculado: 21 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 17 cm Calculado: 20 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 17 cm Calculado: 20 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 18 cm Calculado: 21 cm	
Longitud mínima do las natillas:	Mínimo: 12 cm	Cumple
Longitud mínima de las patillas:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia der:		Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobaciones		
Referencia: P11		
Dimensiones: 150 x 150 x 50 Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno:	valores	LStado
Criterio de CYPE Ingenieros	144. 1 0.47.14D	
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0615087 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.0792648 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.0981 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 454.3 %	Cumple
- En dirección Y:	Reserva seguridad: 408.9 %	Cumple
Flexión en la zapata:	Ŭ	
- En dirección X:	Momento: 30.93 kN·m	Cumple
- En dirección Y:	Momento: 30.92 kN·m	Cumple
Cortante en la zapata:		1
- En dirección X:	Cortante: 25.41 kN	Cumple
- En dirección Y:	Cortante: 25.51 kN	Cumple
Compresión oblicua en la zapata: - Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 385.5 kN/m²	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P11		
Dimensiones: 150 x 150 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25	Malana	F-4I-
Comprobación	Valores	Estado
Canto mínimo: Articulo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P11:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima:	N 46-1 0 0000	
Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Articulo 42.3.2 de la norma EHE-08	Mínimo: 0.0004	
- Armado inferior dirección X:	Calculado: 0.001	Cumple
- Armado inferior dirección Y:	Calculado: 0.001	Cumple
Diámetro mínimo de las barras:	Mínimo: 12 mm	
Recomendación del Artículo 58.8.2 (norma EHE-08)		Cumanala
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capítulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Longitud de anclaje:		Cumpic
Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991	Mínimo: 15 cm	
- Armado inf. dirección X hacia der:	Calculado: 28 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 28 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 27 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 28 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 28 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 28 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 27 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 28 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 12 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 12 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 12 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 12 cm	Cumple

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Referencia: P12		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Tensiones sobre el terreno:	vaiores	Litado
Criterio de CYPE Ingenieros		
- Tensión media en situaciones persistentes:	Máximo: 0.17 MPa Calculado: 0.0406134 MPa	Cumple
- Tensión máxima en situaciones persistentes sin viento:	Máximo: 0.212485 MPa Calculado: 0.070632 MPa	Cumple
- Tensión máxima en situaciones persistentes con viento:	Máximo: 0.212485 MPa Calculado: 0.094176 MPa	Cumple
Vuelco de la zapata: Si el % de reserva de seguridad es mayor que cero, quiere decir que los coeficientes de seguridad al vuelco son mayores que los valores estrictos exigidos para todas las combinaciones de equilibrio.		
- En dirección X:	Reserva seguridad: 167.9 %	Cumple
- En dirección Y:	Reserva seguridad: 137.6 %	Cumple
Flexión en la zapata:		
- En dirección X:	Momento: 13.83 kN·m	Cumple
- En dirección Y:	Momento: 14.25 kN·m	Cumple
Cortante en la zapata:		
- En dirección X:	Cortante: 4.71 kN	Cumple
- En dirección Y:	Cortante: 5.59 kN	Cumple
Compresión oblicua en la zapata:		
- Situaciones persistentes: Criterio de CYPE Ingenieros	Máximo: 5000 kN/m² Calculado: 152.2 kN/m²	Cumple
Canto mínimo: Artículo 58.8.1 de la norma EHE-08	Mínimo: 25 cm Calculado: 50 cm	Cumple
Espacio para anclar arranques en cimentación: - P12:	Mínimo: 27 cm Calculado: 43 cm	Cumple
Cuantía geométrica mínima: Artículo 42.3.5 de la norma EHE-08	Mínimo: 0.0009	
- Armado inferior dirección X:	Calculado: 0.0009	Cumple
- Armado superior dirección X:	Calculado: 0.0009	Cumple
- Armado inferior dirección Y:	Calculado: 0.0009	Cumple
- Armado superior dirección Y:	Calculado: 0.0009	Cumple
Cuantía mínima necesaria por flexión: Artículo 42.3.2 de la norma EHE-08	Calculado: 0.001	
- Armado inferior dirección X:	Mínimo: 0.0003	Cumple
- Armado inferior dirección Y:	Mínimo: 0.0003	Cumple
- Armado superior dirección Y:	Mínimo: 0.0001	Cumple
Diámetro mínimo de las barras: Recomendación del Artículo 58.8.2 (norma EHE-08)	Mínimo: 12 mm	
- Parrilla inferior:	Calculado: 12 mm	Cumple
- Parrilla superior:	Calculado: 12 mm	Cumple
Separación máxima entre barras: Artículo 58.8.2 de la norma EHE-08	Máximo: 30 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
- Armado superior dirección X:	Calculado: 25 cm	Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple
Separación mínima entre barras: Criterio de CYPE Ingenieros, basado en: J. Calavera. "Cálculo de Estructuras de Cimentación". Capitulo 3.16	Mínimo: 10 cm	
- Armado inferior dirección X:	Calculado: 25 cm	Cumple
- Armado inferior dirección Y:	Calculado: 25 cm	Cumple
	Calculado: 25 cm	
- Armado superior dirección X:		Cumple
- Armado superior dirección Y:	Calculado: 25 cm	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Referencia: P12		
Dimensiones: 130 x 130 x 50		
Armados: Xi:Ø12c/25 Yi:Ø12c/25 Xs:Ø12c/25 Ys:Ø12c/25		
Comprobación	Valores	Estado
Longitud de anclaje: Criterio del libro "Cálculo de estructuras de cimentación", J. Calavera. Ed. INTEMAC, 1991		
- Armado inf. dirección X hacia der:	Mínimo: 15 cm Calculado: 18 cm	Cumple
- Armado inf. dirección X hacia izq:	Mínimo: 20 cm Calculado: 23 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 18 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Mínimo: 20 cm Calculado: 23 cm	Cumple
- Armado sup. dirección X hacia der:	Mínimo: 15 cm Calculado: 18 cm	Cumple
- Armado sup. dirección X hacia izq:	Mínimo: 20 cm Calculado: 23 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Mínimo: 15 cm Calculado: 18 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Mínimo: 20 cm Calculado: 23 cm	Cumple
Longitud mínima de las patillas:	Mínimo: 12 cm	
- Armado inf. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado inf. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado inf. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia der:	Calculado: 15 cm	Cumple
- Armado sup. dirección X hacia izq:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia arriba:	Calculado: 15 cm	Cumple
- Armado sup. dirección Y hacia abajo:	Calculado: 15 cm	Cumple
Se cumplen todas las comprobacio	ones	

2.- LISTADO DE VIGAS DE ATADO

2.1.- Descripción

Referencias	Tipo	Geometría	Armado
[P1 - P2], [P5 - P6], [P9 - P10]	C.1	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30
[P2 - P3], [P10 - P11]	C.1	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30
[P3 - P4], [P11 - P12], [P7 - P8]	C.1	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30
[P2 - P6]	C.1	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30
[P4 - P8], [P8 - P12], [P1 - P5], [P5 - P9], [P3 - P7]	C.1	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30
[P6 - P10]	C.1	Ancho: 40.0 cm Canto: 40.0 cm	Superior: 2Ø12 Inferior: 2Ø12 Estribos: 1xØ8c/30

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

2.2.- Comprobación

2.2 Comprobación		
Referencia: C.1 [P1 - P2] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos: - Sin cortantes: Artículo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Se cumplen todas las comprobaciones		
Referencia: C.1 [P2 - P3] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos: - Sin cortantes: Artículo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple

Referencia: C.1 [P3 - P4] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm

-Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30

-Estribus. 1720c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple

Se cumplen todas las comprobaciones

DACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

MENCANI DE EMPERONAS		
Referencia: C.1 [P3 - P4] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Separación máxima estribos:		
- Sin cortantes: Articulo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Se cumplen todas las comp	probaciones	
Referencia: C.1 [P2 - P6] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos: - Sin cortantes: Articulo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Se cumplen todas las comp	orobaciones	
Referencia: C.1 [P4 - P8] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos: - Sin cortantes: Artículo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple

Se cumplen todas las comprobaciones

- Armadura superior:

- Armadura inferior:

Listado de cimentación

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Referencia: C.1 [P8 - P12] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12		
-Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
-ESTIBUOS. TXMOC/SU Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm	Estado
Diametro minimo estribos.	Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos:		
- Sin cortantes: Artículo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal:	Calculado. 00 cm	Campio
Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Se cumplen todas las comprobacione	es	
Referencia: C.1 [P11 - P12] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Articulo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos: - Sin cortantes: Articulo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Articulo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Se cumplen todas las comprobacione	es	
Referencia: C.1 [P1 - P5] (Viga de atado) -Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30		
Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	

Cumple

Cumple

Calculado: 28 cm

Calculado: 28 cm

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Valores	Estado
Valores	Litado
Máximo: 30 cm Calculado: 30 cm	Cumple
Máximo: 30 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm	Cumple
Valores	Estado
Mínimo: 6 mm Calculado: 8 mm	Cumple
Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Mínimo: 2 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm	Cumple
Máximo: 30 cm Calculado: 30 cm	Cumple
Máximo: 30 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm	Cumple
	Estado
Mínimo: 6 mm Calculado: 8 mm	Cumple
Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Mínimo: 2 cm	
Calculado: 28 cm	Cumple
	Cumple Cumple
Calculado: 28 cm	'
Calculado: 28 cm Calculado: 28 cm Máximo: 30 cm Calculado: 30 cm	Cumple
Calculado: 28 cm Calculado: 28 cm Máximo: 30 cm	Cumple
	Valores Máximo: 30 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm Valores Mínimo: 6 mm Calculado: 29.2 cm Mínimo: 2 cm Calculado: 28 cm Calculado: 28 cm Máximo: 30 cm Calculado: 30 cm Calculado: 28 cm Valores Máximo: 30 cm Calculado: 28 cm Valores Máximo: 30 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm

Se cumplen todas las comprobaciones

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Referencia: C.1 [P7 - P8] (Viga de atado)
-Dimensiones: 40.0 cm x 40.0 cm
-Armadura superior: 2Ø12
-Armadura inferior: 2Ø12
-Estribos: 1xØ8c/30
Comprobación
Diámetro mínimo estribos:

Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple
Separación máxima estribos: - Sin cortantes: Articulo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple

Se cumplen todas las comprobaciones

Referencia: C.1 [P3 - P7] (Viga de atado)
Dimonsionos: 100 cm v 100 cm

-Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30

Comprobación	Valores	Estado			
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple			
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple			
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm				
- Armadura superior:	Calculado: 28 cm	Cumple			
- Armadura inferior:	Calculado: 28 cm	Cumple			
Separación máxima estribos: - Sin cortantes: Artículo 44.2.3.4.1 de la norma EHE-08	Máximo: 30 cm Calculado: 30 cm	Cumple			
Separación máxima armadura longitudinal: Artículo 42.3.1 de la norma EHE-08	Máximo: 30 cm				
- Armadura superior:	Calculado: 28 cm	Cumple			
- Armadura inferior:	Calculado: 28 cm	Cumple			
Sa cumplen todas las comprehaciones					

Se cumplen todas las comprobaciones

Referencia: C.1 [P6 - P10] (Viga de atado)

-Dimensiones: 40.0 cm x 40.0 cm -Armadura superior: 2Ø12 -Armadura inferior: 2Ø12 -Estribos: 1xØ8c/30

Comprobación	Valores	Estado
Diámetro mínimo estribos:	Mínimo: 6 mm Calculado: 8 mm	Cumple
Separación mínima entre estribos: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Separación mínima armadura longitudinal: Artículo 69.4.1 de la norma EHE-08	Mínimo: 2 cm	
- Armadura superior:	Calculado: 28 cm	Cumple
- Armadura inferior:	Calculado: 28 cm	Cumple

DALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Valores	Estado
1 2.07.00	
Máximo: 30 cm Calculado: 30 cm	Cumple
Máximo: 30 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm	Cumple
Valores	Estado
Mínimo: 6 mm Calculado: 8 mm	Cumple
Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Mínimo: 2 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm	Cumple
Máximo: 30 cm Calculado: 30 cm	Cumple
Máximo: 30 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm	Cumple
	Estado
Mínimo: 6 mm Calculado: 8 mm	Cumple
Mínimo: 2 cm Calculado: 29.2 cm	Cumple
Mínimo: 2 cm	
Calculado: 28 cm	Cumple
Calculado: 28 cm Calculado: 28 cm	Cumple Cumple
	'
Calculado: 28 cm Máximo: 30 cm Calculado: 30 cm	Cumple
Calculado: 28 cm Máximo: 30 cm	Cumple
	Valores Máximo: 30 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm Mínimo: 6 mm Calculado: 29.2 cm Mínimo: 2 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm Calculado: 28 cm Calculado: 30 cm Calculado: 30 cm Calculado: 28 cm

Se cumplen todas las comprobaciones

Apéndice nº 3.- Esfuerzos de los pilares

ÍNDICE

1	MATERIALES	
	1.1 Hormigones	2
	1.2 Aceros por elemento y posición	2
	1.2.1 Aceros en barras	. 2
	1.2.2 Aceros en perfiles	. 2
2	ARMADO DE PILARES Y PANTALLAS	
	2.1 Pilares	3
3	ESFUERZOS DE PILARES, PANTALLAS Y MUROS POR HIPÓTESIS	3
4	ARRANQUES DE PILARES, PANTALLAS Y MUROS POR HIPÓTESIS	7
5	PÉSIMOS DE PILARES, PANTALLAS Y MUROS	
	5.1 Pilares	11
6	SUMATORIO DE ESFUERZOS DE PILARES, PANTALLAS Y MUROS POR HIPÓTESIS Y PLANTA	12
	6.1 - Resumido	12

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

1.- MATERIALES

1.1.- Hormigones

		f	£		Árido	
Elemento	Hormigón	(MPa)	γ _c	Naturaleza	Tamaño máximo (mm)	
Pilares y pantallas	HA-30	30	1.50	Cuarcita	15	
Muros	HA-25	25	1.50	Cuarcita	15	

1.2.- Aceros por elemento y posición

1.2.1.- Aceros en barras

Elemento	Acero	f _{yk} (MPa)	γs
Todos	B 500 S	500	1.15

1.2.2.- Aceros en perfiles

Tipo de acero para perfiles	Acero	Límite elástico (MPa)	Módulo de elasticidad (GPa)
Acero conformado	S235	235	210
Acero laminado	S275	275	210

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

2.- ARMADO DE PILARES Y PANTALLAS

2.1.- Pilares

					Ar	mado de	e pilares						
Horm	igón: HA-30, Yc	=1.5											
		Geometría					Arr	naduras					
Pilar		D	Tramo (m)		Ba	rras		Est	ribos	Aprov.	Estado		
i iidi	Planta	Dimensiones (cm)		Esquina	Cara X	Cara Y	Cuantía (%)	Perimetral	Dir. X ⁽¹⁾	Dir. Y ⁽¹⁾	Separación (cm)	(%)	Lstado
P1	Forjado 2	30x30	3.40/4.15								15	37.7	Cumple
	Forjado 1	30x30	-0.15/3.40	4Ø16	-	-	0.89	1eØ6				37.7	
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	20.5	Cumple
P2	Forjado 2	30x30	3.40/4.15	4Ø16	-	-	0.89	1eØ6			6	81.3	Cumple
	Forjado 1	30x30	-0.15/3.10	4Ø16	-	-	0.89	1eØ6			15	81.3	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	19.2	Cumple
P3	Forjado 1	30x30	-0.15/2.80	4Ø16	-	-	0.89	1eØ6			15	19.0	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	19.0	Cumple
P4	Forjado 1	30x30	-0.15/3.10	4Ø16	-	-	0.89	1eØ6			15	20.9	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	20.9	Cumple
P5	Forjado 2	30x30	3.40/4.15								45	07.5	
	Forjado 1	30x30	-0.15/3.40	4Ø16	-	-	0.89	1eØ6			15	27.5	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	18.5	Cumple
P6	Forjado 2	30x30	3.40/4.15	4Ø16	-	-	0.89	1eØ6			6	39.0	Cumple
	Forjado 1	30x30	-0.15/3.10	4Ø16	-	-	0.89	1eØ6			15	23.3	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	21.7	Cumple
P7	Forjado 1	30x30	-0.15/2.80	4Ø16	-	-	0.89	1eØ6		15	15	20.8	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	20.8	Cumple
P8	Forjado 1	30x30	-0.15/3.10	4Ø16	-	-	0.89	1eØ6			15	15.3	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	15.3	Cumple
P9	Forjado 2	30x30	3.40/4.15								45	20.4	0
	Forjado 1	30x30	-0.15/3.40	4Ø16	-	-	0.89	1eØ6			15	30.4	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	18.9	Cumple
P10	Forjado 2	30x30	3.40/4.15	4Ø16	2Ø12	2Ø12	1.40	1eØ6	1rØ6	1rØ6	6	62.2	Cumple
	Forjado 1	30x30	-0.15/3.10	4Ø16	2Ø12	2Ø12	1.40	1eØ6			15	62.2	Cumple
	Cimentación	-	-	4Ø16	2Ø12	2Ø12	1.40	1eØ6	-	-	-	18.0	Cumple
P11	Forjado 1	30x30	-0.15/2.80	4Ø16	-	-	0.89	1eØ6			15	19.0	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	_	-	-	19.0	Cumple
P12	Forjado 1	30x30	-0.15/3.10	4Ø16	-	-	0.89	1eØ6			15	20.7	Cumple
	Cimentación	-	-	4Ø16	-	-	0.89	1eØ6	-	-	-	20.7	Cumple
Notas:	: e = estribo, r = rama												

3.- ESFUERZOS DE PILARES, PANTALLAS Y MUROS POR HIPÓTESIS

- Tramo: Nivel inicial / nivel final del tramo entre plantas.
- Nota:

Los esfuerzos están referidos a ejes locales del pilar.

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

					Base Cabeza											
Soporte	Planta	Dimensión (cm)	Tramo (m)	Hipótesis	N	Mx	Му	Qx	Qy	T	N	Mx	Му	Qx	Qy	T
D4	Fadada 0	` ′		Dana manula	(kN)	(kN·m)	(kN·m)	(kN)	(kN)	(kN·m)	(kN)	(kN·m)	(kN·m)	(kN)	(kN)	(kN·m)
P1	Forjado 2	30x30	3.40/4.15	Peso propio Cargas muertas	26.6 29.5	-2.5 -3.9	-2.9 -2.5	1.2 1.8	1.5 1.3	-0.0 0.0	24.9 29.5	-3.4 -5.3	-4.1 -3.4	1.2 1.8	1.5 1.3	-0.0 0.0
				Sobrecarga de uso	4.0	-0.3	-0.6	0.1	0.3	-0.0	4.0	-0.4	-0.8	0.1	0.3	-0.0
				Q 1 (1) Q 1 (2)	10.4 -1.0	-4.4 0.0	0.2 0.3	2.3 -0.0	-0.1 -0.1	0.0 -0.0	10.4 -1.0	-6.1 0.1	0.3	-0.0	-0.1 -0.1	0.0 -0.0
				Q 1 (3)	0.6	-0.3	-0.1	0.2	0.1	0.0	0.6	-0.4	-0.2	0.2	0.1	0.0
				Q 1 (4) Viento +X exc.+	4.7 -1.0	-0.2 1.5	-1.2 0.1	0.1 -0.8	0.6 -0.1	0.0 -0.0	4.7 -1.0	-0.3 2.0	-1.6 0.2	-0.8	0.6 -0.1	0.0 -0.0
				Viento +X exc	-0.9	1.6	-0.1	-0.9	0.1	0.0	-0.9	2.0	-0.2	-0.9	0.1	0.0
				Viento -X exc.+	1.0	-1.5	-0.1	0.8	0.1	0.0	1.0	-2.0	-0.2	0.8	0.1	0.0
				Viento -X exc Viento +Y exc.+	0.9 -1.2	-1.6 0.0	0.1 2.2	0.9 -0.0	-0.1 -1.0	-0.0 0.0	0.9 -1.2	-2.2 0.1	0.2 3.0	-0.0	-0.1 -1.0	-0.0 0.0
				Viento +Y exc	-1.4	-0.1	2.5	0.1	-1.3	-0.0	-1.4	-0.2	3.5	0.1	-1.3	-0.0
				Viento -Y exc.+ Viento -Y exc	1.2 1.4	-0.0 0.1	-2.2 -2.5	0.0 -0.1	1.0 1.3	-0.0 0.0	1.2 1.4	-0.1 0.2	-3.0 -3.5	-0.1	1.0 1.3	-0.0 0.0
	Forjado 1	30x30	-0.15/3.40	Peso propio	34.4	1.7	2.4	1.2	1.5	-0.0	26.6	-2.5	-2.9	1.2	1.5	-0.0
				Cargas muertas	29.5	2.5	2.0	1.8	1.3	0.0	29.5	-3.9	-2.5	1.8	1.3	0.0
				Sobrecarga de uso Q 1 (1)	4.0 10.4	0.2 3.8	0.5 -0.1	0.1 2.3	0.3 -0.1	-0.0 0.0	4.0 10.4	-0.3 -4.4	-0.6 0.2	0.1 2.3	0.3 -0.1	-0.0 0.0
				Q 1 (2)	-1.0	-0.1	-0.1	-0.0	-0.1	-0.0	-1.0	0.0	0.2	-0.0	-0.1	-0.0
				Q 1 (3)	0.6	0.3	0.1	0.2	0.1	0.0	0.6	-0.3	-0.1	0.2	0.1	0.0
				Q 1 (4) Viento +X exc.+	4.7 -1.0	0.2 -3.5	0.9 -0.3	0.1 -1.4	0.6 -0.1	0.0	4.7 -1.0	-0.2 1.5	-1.2 0.1	-1.4	0.6 -0.1	0.0
				Viento +X exc	-0.9	-3.8	0.3	-1.5	0.1	-0.0	-0.9	1.6	-0.1	-1.5	0.1	-0.0
				Viento -X exc.+ Viento -X exc	1.0 0.9	3.5 3.8	0.3 -0.3	1.4 1.5	0.1 -0.1	-0.0 0.0	1.0 0.9	-1.5 -1.6	-0.1 0.1	1.4	0.1 -0.1	-0.0 0.0
				Viento +Y exc.+	-1.2	-0.1	-4.9	-0.0	-2.0	-0.0	-1.2	0.0	2.2	-0.0	-2.0	-0.0
				Viento +Y exc Viento -Y exc.+	-1.4	0.3 0.1	-5.7 4.9	0.1	-2.3	0.0	-1.4	-0.1 -0.0	2.5	0.1	-2.3 2.0	0.0
				Viento -Y exc	1.2 1.4	-0.3	5.7	-0.1	2.0	-0.0	1.2 1.4	0.0	-2.2 -2.5	-0.1	2.0	-0.0
P2	Forjado 2	30x30	3.40/4.15	Peso propio	30.5	5.2	11.7	-0.2	23.4	-0.0	28.9	5.3	-5.9	-0.2	23.4	-0.0
				Cargas muertas	34.7 4.7	7.8 0.8	14.9 2.5	-2.2 0.1	25.9 4.8	0.0 -0.0	34.7 4.7	9.5 0.7	-4.5 -1.1	-2.2 0.1	25.9 4.8	-0.0
				Sobrecarga de uso Q 1 (1)	9.0	2.4	0.2	-4.6	0.3	0.1	9.0	5.8	-0.0	-4.6	0.3	0.1
				Q 1 (2)	-0.4	0.0	0.2	0.1	-0.1	-0.0	-0.4	-0.0	0.2	0.1	-0.1	-0.0
				Q 1 (3) Q 1 (4)	-0.3 3.8	2.4 0.3	0.1 0.8	3.7 0.2	0.4	0.0	-0.3 3.8	-0.4 0.1	-0.1 -1.8	3.7 0.2	0.4 3.4	0.0
				Viento +X exc.+	0.9	1.0	0.1	-1.0	0.1	0.0	0.9	1.7	0.0	-1.0	0.1	0.0
				Viento +X exc Viento -X exc.+	1.0 -0.9	1.1 -1.0	-0.1 -0.1	-1.0 1.0	-0.1 -0.1	-0.0 -0.0	1.0 -0.9	1.9 -1.7	-0.0 -0.0	-1.0 1.0	-0.1 -0.1	-0.0 -0.0
				Viento -X exc	-1.0	-1.1	0.1	1.0	0.1	0.0	-1.0	-1.9	0.0	1.0	0.1	0.0
				Viento +Y exc.+ Viento +Y exc	-0.9 -0.9	0.2 -0.3	1.6 1.9	0.3	-0.1 0.3	0.0	-0.9 -0.9	-0.1 -0.3	1.7 1.7	0.3	-0.1 0.3	0.0
				Viento -Y exc.+	0.9	-0.3	-1.6	-0.3	0.3	-0.0	0.9	0.3	-1.7	-0.3	0.3	-0.0
				Viento -Y exc	0.9	0.3	-1.9	-0.0	-0.3	-0.0	0.9	0.3	-1.7	-0.0	-0.3	-0.0
	Forjado 1	30x30	-0.15/3.10	Peso propio Cargas muertas	61.9 77.4	-0.2 1.2	1.1 2.2	0.3 1.7	1.0 1.9	-0.0 0.0	54.8 77.4	-1.1 -4.2	-2.0 -4.0	0.3	1.0 1.9	-0.0 0.0
				Sobrecarga de uso	9.2	-0.1	0.3	0.0	0.2	0.0	9.2	-0.1	-0.5	0.0	0.2	0.0
				Q 1 (1)	9.4	-1.5 -0.1	0.4	-1.0 -0.0	0.2	-0.0 -0.0	9.4	1.8 0.1	-0.3	-1.0 -0.0	0.2	-0.0
				Q 1 (2) Q 1 (3)	-0.2 -0.1	-0.1	0.1 0.0	-0.0	0.1	0.0	-0.2 -0.1	1.6	-0.1 -0.0	-0.0	0.0	-0.0 0.0
				Q 1 (4)	3.8	-0.1	-0.3	-0.1	-0.3	0.0	3.8	0.1	0.5	-0.1	-0.3	0.0
				Viento +X exc.+ Viento +X exc	-0.0 0.0	-4.7 -5.2	-0.2 0.2	-2.4 -2.6	-0.1 0.1	0.0 -0.0	-0.0 0.0	3.0 3.4	0.2 -0.2	-2.4 -2.6	-0.1 0.1	0.0 -0.0
				Viento -X exc.+	0.0	4.7	0.2	2.4	0.1	-0.0	0.0	-3.0	-0.2	2.4	0.1	-0.0
				Viento -X exc Viento +Y exc.+	-0.0	5.2	-0.2	2.6	-0.1	0.0	-0.0	-3.4	0.2	2.6	-0.1	0.0
				Viento +Y exc	-3.6 -3.7	-0.3 0.5	-8.1 -8.7	-0.2 0.2	-4.5 -4.8	-0.0 0.0	-3.6 -3.7	0.4 -0.3	6.5 7.0	0.2	-4.5 -4.8	-0.0 0.0
				Viento -Y exc.+	3.6	0.3	8.1	0.2	4.5	0.0	3.6	-0.4	-6.5	0.2	4.5	0.0
P3	Forjado 1	30x30	-0.15/2.80	Viento -Y exc Peso propio	3.7 52.9	-0.5 -1.8	8.7 1.5	-0.2 -0.9	4.8 1.0	-0.0 -0.0	3.7 46.3	0.3	-7.0 -1.6	-0.2 -0.9	4.8 1.0	-0.0
"	. 01,440 1	30,30	3.13/2.00	Cargas muertas	45.1	-2.9	0.7	-1.6	0.5	0.0	45.1	1.9	-0.8	-1.6	0.5	0.0
				Sobrecarga de uso Q 1 (1)	8.0 -0.3	-0.3 -0.7	0.3 -0.0	-0.2 -0.3	0.2 -0.0	0.0	8.0 -0.3	0.2 0.3	-0.3 0.0	-0.2 -0.3	0.2 -0.0	0.0 -0.0
				Q 1 (1) Q 1 (2)	0.0	-0.7	0.0	-0.3	0.0	-0.0	0.0	0.3	-0.0	-0.3	0.0	-0.0
				Q 1 (3)	-0.3	-0.3	-0.0		-0.0	0.0	-0.3	0.1	-0.0	-0.1	-0.0	0.0
				Q 1 (4) Viento +X exc.+	-0.0 -0.1	0.0 -5.1	-0.0 0.2	0.0 -2.5	-0.0 0.1	0.0	-0.0 -0.1	-0.0 2.1	0.0 -0.1	0.0 -2.5	-0.0 0.1	0.0
				Viento +X exc	-0.2	-5.6	-0.2	-2.7	-0.1	-0.0	-0.2	2.4	0.1	-2.7	-0.1	-0.0
				Viento -X exc.+ Viento -X exc	0.1 0.2	5.1 5.6	-0.2 0.2	2.5 2.7	-0.1 0.1	-0.0 0.0	0.1 0.2	-2.1 -2.4	0.1 -0.1	2.5 2.7	-0.1 0.1	-0.0 0.0
				Viento +Y exc.+	-2.2	-0.2	-8.1	-0.1	-3.9	-0.0	-2.2	0.1	3.5	-0.1	-3.9	-0.0
				Viento +Y exc	-2.0	0.6	-7.6		-3.7	0.0	-2.0	-0.2	3.3	0.3	-3.7	0.0
				Viento -Y exc.+ Viento -Y exc	2.2 2.0	0.2 -0.6	8.1 7.6	0.1 -0.3	3.9 3.7	0.0 -0.0	2.2 2.0	-0.1 0.2	-3.5 -3.3	-0.3	3.9 3.7	0.0 -0.0
	l	l		VICINO I CAC.	2.0	-0.0	1.0	0.3	3.7	-0.0	2.0	0.2	1 -0.0	J 0.3	J./	-0.0

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

					Base							Cabeza							
Soporte	Planta	Dimensión (cm)	Tramo (m)	Hipótesis	N (kN)	Mx (kN⋅m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN⋅m)			
P4	Forjado 1	30x30	-0.15/3.10	Peso propio	20.4	-1.7	1.3	-0.9	0.9	-0.0	13.2	1.3	-1.8	-0.9	0.9	-0.0			
				Cargas muertas Sobrecarga de uso	19.5 2.1	-2.7 -0.3	1.4 0.2	-1.5 -0.1	1.1 0.2	0.0	19.5 2.1	2.1 0.2	-2.0 -0.3	-1.5 -0.1	1.1 0.2	0.0			
				Q 1 (1)	0.2	-0.7	-0.3	-0.3	-0.1	-0.0	0.2	0.3	0.1	-0.3	-0.1	-0.0			
				Q 1 (2) Q 1 (3)	0.0 0.1	-0.1 -0.3	-0.0 -0.0	-0.0 -0.2	-0.0 -0.0	-0.0 0.0	0.0	0.0 0.1	0.0	-0.0 -0.2	-0.0 -0.0	-0.0 0.0			
				Q 1 (4)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0	-0.0	0.0	0.0	0.0			
				Viento +X exc.+	1.1	-4.1	0.3	-1.7	0.1	0.0	1.1	1.5	-0.1	-1.7	0.1	0.0			
				Viento +X exc Viento -X exc.+	1.1 -1.1	-4.6 4.1	-0.3 -0.3	-1.9 1.7	-0.1 -0.1	-0.0 -0.0	1.1 -1.1	1.7 -1.5	0.1 0.1	-1.9 1.7	-0.1 -0.1	-0.0 -0.0			
				Viento -X exc	-1.1	4.6	0.3	1.9	0.1	0.0	-1.1	-1.7	-0.1	1.9	0.1	0.0			
				Viento +Y exc.+ Viento +Y exc	-1.2 -1.2	-0.1 0.5	-6.6 -5.6	-0.0 0.2	-2.8 -2.4	-0.0 0.0	-1.2 -1.2	0.0 -0.2	2.6 2.2	-0.0 0.2	-2.8 -2.4	-0.0 0.0			
				Viento -Y exc.+	1.2	0.1	6.6	0.0	2.8	0.0	1.2	-0.0	-2.6	0.0	2.8	0.0			
				Viento -Y exc	1.2	-0.5	5.6	-0.2	2.4	-0.0	1.2	0.2	-2.2	-0.2	2.4	-0.0			
P5	Forjado 2	30x30	3.40/4.15	Peso propio Cargas muertas	67.9 57.5	-4.1 -2.9	-0.0 -0.0	2.0 1.3	0.0	-0.0 0.0	66.3 57.5	-5.6 -3.9	-0.0 -0.0	2.0 1.3	0.0	-0.0 0.0			
				Sobrecarga de uso	12.7	-0.9	-0.0	0.4	0.0	-0.0	12.7	-1.2	-0.0	0.4	0.0	-0.0			
				Q 1 (1)	3.0 7.3	-0.4 -0.2	-0.3 -1.0	0.2	0.2	0.0 -0.0	3.0 7.3	-0.6 -0.3	-0.5 -1.4	0.2	0.2 0.5	0.0 -0.0			
				Q 1 (2) Q 1 (3)	10.1	-4.2	-0.0	2.1	0.0	0.0	10.1	-5.8	-0.1	2.1	0.0	0.0			
				Q 1 (4)	7.6	-0.2	1.0	0.1	-0.5	0.0	7.6	-0.3	1.4	0.1	-0.5	0.0			
				Viento +X exc.+ Viento +X exc	-0.9 -0.9	1.4 1.4	0.1 -0.1	-0.8 -0.8	-0.1 0.1	-0.0 0.0	-0.9 -0.9	2.0 2.0	0.2 -0.2	-0.8 -0.8	-0.1 0.1	-0.0 0.0			
				Viento -X exc.+	0.9	-1.4	-0.1	0.8	0.1	0.0	0.9	-2.0	-0.2	0.8	0.1	0.0			
				Viento -X exc Viento +Y exc.+	0.9 0.0	-1.4 -0.0	0.1 2.7	0.8	-0.1 -1.3	-0.0 0.0	0.9	-2.0 -0.0	0.2 3.6	0.8	-0.1 -1.3	-0.0 0.0			
				Viento +Y exc	0.0	-0.0	3.1	0.0	-1.6	-0.0	0.0	-0.0	4.4	0.0	-1.6	-0.0			
				Viento -Y exc.+	-0.0	0.0	-2.7	-0.0	1.3	-0.0 0.0	-0.0	0.0	-3.6	-0.0 -0.0	1.3	-0.0			
	Forjado 1	30x30	-0.15/3.40	Viento -Y exc Peso propio	-0.0 75.8	3.0	-3.1 0.0	-0.0 2.0	1.6 0.0	-0.0	-0.0 67.9	0.0 -4.1	-4.4 -0.0	2.0	1.6 0.0	-0.0			
	l oljado i	30,30	-0.13/3.40	Cargas muertas	57.5	1.7	0.0	1.3	0.0	0.0	57.5	-2.9	-0.0	1.3	0.0	0.0			
				Sobrecarga de uso	12.7 3.0	0.6 0.5	0.0	0.4	0.0 0.2	-0.0 0.0	12.7 3.0	-0.9 -0.4	-0.0 -0.3	0.4	0.0	-0.0 0.0			
				Q 1 (1) Q 1 (2)	7.3	0.3	0.3	0.2	0.2	-0.0	7.3	-0.4	-1.0	0.2	0.2	-0.0			
				Q 1 (3)	10.1	3.4	0.0	2.1	0.0	0.0	10.1	-4.2	-0.0	2.1	0.0	0.0			
				Q 1 (4) Viento +X exc.+	7.6 -0.9	0.2 -3.6	-0.9 -0.3	0.1 -1.4	-0.5 -0.1	0.0	7.6 -0.9	-0.2 1.4	1.0 0.1	0.1 -1.4	-0.5 -0.1	0.0			
				Viento +X exc	-0.9	-3.6	0.3	-1.4	0.1	-0.0	-0.9	1.4	-0.1	-1.4	0.1	-0.0			
				Viento -X exc.+ Viento -X exc	0.9 0.9	3.6 3.6	0.3 -0.3	1.4 1.4	0.1 -0.1	-0.0 0.0	0.9 0.9	-1.4 -1.4	-0.1 0.1	1.4 1.4	0.1 -0.1	-0.0 0.0			
				Viento +Y exc.+	0.0	0.0	-5.3	0.0	-2.2	-0.0	0.0	-0.0	2.7	0.0	-2.2	-0.0			
				Viento +Y exc Viento -Y exc.+	0.0 -0.0	0.0 -0.0	-6.2 5.3	-0.0	-2.6 2.2	0.0	0.0	-0.0 0.0	3.1 -2.7	0.0	-2.6 2.2	0.0			
				Viento -Y exc	-0.0	-0.0	6.2	-0.0	2.6	-0.0	-0.0	0.0	-3.1	-0.0	2.6	-0.0			
P6	Forjado 2	30x30	3.40/4.15	Peso propio	62.7	5.3	0.1	-4.0	0.2	-0.0	61.1	8.3	-0.1	-4.0	0.2	-0.0			
				Cargas muertas Sobrecarga de uso	51.6 11.7	6.1 1.1	0.1	-0.5 -0.9	0.1 0.1	0.0 -0.0	51.6 11.7	6.4 1.8	-0.0 -0.0	-0.5 -0.9	0.1 0.1	0.0 -0.0			
				Q 1 (1)	1.0	2.7	1.0	3.9	2.3	0.1	1.0	-0.2	-0.8	3.9	2.3	0.1			
				Q 1 (2)	5.2	0.0	1.2	-0.4	3.8	-0.0	5.2	0.3	-1.6	-0.4 -9.9	3.8	-0.0			
				Q 1 (3) Q 1 (4)	9.2 5.4	-1.0 0.0	0.0 -1.2	-9.9 -0.4	0.2 -3.8	0.0	9.2 5.4	6.5 0.3	-0.1 1.6	-9.9	0.2 -3.8	0.0			
				Viento +X exc.+	0.9	1.3	0.1	-0.6	0.1	0.0	0.9	1.8	-0.0	-0.6	0.1	0.0			
				Viento +X exc Viento -X exc.+	0.9 -0.9	1.3 -1.3	-0.1 -0.1	-0.6 0.6	-0.1 -0.1	-0.0 -0.0	0.9 -0.9	1.8 -1.8	-0.0 0.0	-0.6 0.6	-0.1 -0.1	-0.0 -0.0			
				Viento -X exc	-0.9	-1.3	0.1	0.6	0.1	0.0	-0.9	-1.8	0.0	0.6	0.1	0.0			
				Viento +Y exc.+ Viento +Y exc	0.0	-0.0 -0.0	-1.7 -1.4	-0.0 -0.0	-4.8 -4.5	0.0	0.0	-0.0 -0.0	2.0 1.9	-0.0 -0.0	-4.8 -4.5	0.0			
				Viento -Y exc.+	-0.0	0.0	1.7	0.0	4.8	-0.0	-0.0	0.0	-2.0	0.0	4.8	-0.0			
		00.00	0.45/0.40	Viento -Y exc	-0.0	0.0	1.4	0.0	4.5	-0.0	-0.0	0.0	-1.9	0.0	4.5	-0.0			
	Forjado 1	30x30	-0.15/3.10	Peso propio Cargas muertas	115.6 120.9	0.7 -0.1	0.0	1.0 0.6	0.0	-0.0 0.0	108.4 120.9	-2.7 -1.9	-0.0 -0.0	1.0 0.6	0.0	-0.0 0.0			
				Sobrecarga de uso	21.6	0.3	0.0	0.3	0.0	0.0	21.6	-0.8	-0.0	0.3	0.0	0.0			
				Q 1 (1) Q 1 (2)	1.1 4.9	-1.3 -0.0	0.4 -0.1	-0.9 -0.0	0.2 -0.1	-0.0 -0.0	1.1 4.9	1.8 0.0	-0.2 0.3	-0.9 -0.0	0.2 -0.1	-0.0 -0.0			
				Q 1 (3)	8.8	-0.0	-0.0	0.1	-0.0	0.0	8.8	-0.4	0.0	0.1	-0.0	0.0			
				Q 1 (4) Viento +X exc.+	5.2 0.0	-0.0 -4.9	0.1 -0.2	-0.0 -2.5	0.1 -0.1	0.0	5.2 0.0	0.0 3.1	-0.3 0.2	-0.0 -2.5	0.1 -0.1	0.0			
				Viento +X exc	0.0	-4.9 -4.9	0.2		0.1	-0.0	0.0	3.1	-0.2	-2.5 -2.5	0.1	-0.0			
				Viento -X exc.+	-0.0	4.9	0.2	2.5	0.1	-0.0	-0.0	-3.1	-0.2	2.5	0.1	-0.0			
				Viento -X exc Viento +Y exc.+	-0.0 0.0	4.9 -0.0	-0.2 -8.8	2.5 -0.0	-0.1 -5.1	0.0 -0.0	-0.0 0.0	-3.1 0.0	0.2 7.8	2.5 -0.0	-0.1 -5.1	0.0 -0.0			
				Viento +Y exc	0.0	-0.0	-9.4	-0.0	-5.4	0.0	0.0	0.0	8.3	-0.0	-5.4	0.0			
				Viento -Y exc.+ Viento -Y exc	-0.0 -0.0	0.0	8.8 9.4	0.0	5.1 5.4	0.0 -0.0	-0.0 -0.0	-0.0 -0.0	-7.8 -8.3	0.0	5.1 5.4	0.0 -0.0			

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

		Dimensión	Tramo				Bas	е					Cabe	za		
Soporte	Planta	(cm)	(m)	Hipótesis	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)
P7	Forjado 1	30x30	-0.15/2.80	Peso propio	143.4	-1.7	0.0	-0.9	0.0	-0.0	136.9	0.9	-0.0	-0.9	0.0	-0.0
				Cargas muertas Sobrecarga de uso	73.6 28.2	-2.0 -0.4	0.0	-1.0 -0.2	0.0	0.0	73.6 28.2	0.9 0.2	-0.0 -0.0	-1.0 -0.2	0.0	0.0
				Q 1 (1)	-0.3	-0.3	-0.0	-0.1	-0.0	-0.0	-0.3	0.1	0.0	-0.1	-0.0	-0.0
				Q 1 (2)	-0.0 0.1	-0.0 -0.4	0.0 -0.0	-0.0 -0.2	0.0	-0.0 0.0	-0.0 0.1	0.0 0.2	-0.0 0.0	-0.0 -0.2	-0.0	-0.0 0.0
				Q 1 (3) Q 1 (4)	0.0	-0.4	-0.0	-0.2	-0.0	0.0	0.0	0.2	0.0	-0.2	-0.0	0.0
				Viento +X exc.+	-0.3	-5.3	0.2	-2.5	0.1	0.0	-0.3	2.2	-0.1	-2.5	0.1	0.0
				Viento +X exc Viento -X exc.+	-0.3 0.3	-5.3 5.3	-0.2 -0.2	-2.5 2.5	-0.1 -0.1	-0.0 -0.0	-0.3 0.3	2.2 -2.2	0.1 0.1	-2.5 2.5	-0.1 -0.1	-0.0 -0.0
				Viento -X exc	0.3	5.3	0.2	2.5	0.1	0.0	0.3	-2.2	-0.1	2.5	0.1	0.0
				Viento +Y exc.+	0.0	-0.0	-8.3	-0.0	-4.1	-0.0	0.0	0.0	3.8	-0.0	-4.1	-0.0
				Viento +Y exc Viento -Y exc.+	-0.0	-0.0 0.0	-7.8 8.3	-0.0 0.0	-3.8 4.1	0.0	0.0	0.0 -0.0	3.5 -3.8	-0.0 0.0	-3.8 4.1	0.0
				Viento -Y exc	-0.0	0.0	7.8	0.0	3.8	-0.0	-0.0	-0.0	-3.5	0.0	3.8	-0.0
P8	Forjado 1	30x30	-0.15/3.10	Peso propio	42.0	-2.4	0.0	-1.4	0.0	-0.0	34.9	2.3	-0.0	-1.4	0.0	-0.0
				Cargas muertas	40.3 6.3	-2.8 -0.5	0.0	-1.6 -0.3	0.0	0.0	40.3 6.3	2.4 0.5	-0.0 -0.0	-1.6 -0.3	0.0	0.0
				Sobrecarga de uso Q 1 (1)	0.3	-0.3	-0.3	-0.3	-0.1	-0.0	0.2	0.3	0.1	-0.2	-0.1	-0.0
				Q 1 (2)	0.0	-0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0
				Q 1 (3) Q 1 (4)	0.1	-0.3 -0.0	-0.0 0.0	-0.1 -0.0	0.0	0.0	0.1	0.1 0.0	-0.0 -0.0	-0.1 -0.0	0.0	0.0
				Viento +X exc.+	1.1	-4.4	0.3	-1.9	0.2	0.0	1.1	1.7	-0.2	-1.9	0.2	0.0
				Viento +X exc	1.1	-4.4	-0.3	-1.9	-0.1	-0.0	1.1	1.7	0.1	-1.9	-0.1	-0.0
				Viento -X exc.+ Viento -X exc	-1.1 -1.1	4.4 4.4	-0.3 0.3	1.9 1.9	-0.2 0.1	-0.0 0.0	-1.1 -1.1	-1.7 -1.7	0.2 -0.1	1.9 1.9	-0.2 0.1	-0.0 0.0
				Viento +Y exc.+	-0.0	0.0	-6.9	0.0	-3.1	-0.0	-0.0	-0.0	3.1	0.0	-3.1	-0.0
				Viento +Y exc	-0.0	0.0	-5.9	0.0	-2.6	0.0	-0.0	-0.0	2.7	0.0	-2.6	0.0
				Viento -Y exc.+ Viento -Y exc	0.0	-0.0 -0.0	6.9 5.9	-0.0 -0.0	3.1 2.6	0.0 -0.0	0.0	0.0	-3.1 -2.7	-0.0 -0.0	3.1 2.6	0.0 -0.0
P9	Forjado 2	30x30	3.40/4.15	Peso propio	27.2	-2.5	3.0	1.2	-1.5	-0.0	25.6	-3.4	4.1	1.2	-1.5	-0.0
	,			Cargas muertas	30.5	-3.9	2.5	1.8	-1.3	0.0	30.5	-5.3	3.4	1.8	-1.3	0.0
				Sobrecarga de uso Q 1 (1)	4.2 9.0	-0.3 -0.5	0.6 0.9	0.1	-0.3 -0.5	-0.0 0.0	4.2 9.0	-0.4 -0.6	0.8 1.3	0.1	-0.3 -0.5	-0.0 0.0
				Q 1 (1)	4.9	-0.2	1.2	0.2	-0.5	-0.0	4.9	-0.3	1.7	0.2	-0.6	-0.0
				Q 1 (3)	0.7	-0.3	0.2	0.2	-0.1	0.0	0.7	-0.4	0.2	0.2	-0.1	0.0
				Q 1 (4) Viento +X exc.+	-1.0 -0.9	0.0 1.6	-0.3 0.1	-0.0 -0.9	0.1 -0.1	0.0 -0.0	-1.0 -0.9	0.1 2.2	-0.4 0.2	-0.0 -0.9	0.1 -0.1	0.0 -0.0
				Viento +X exc	-1.0	1.5	-0.1	-0.8	0.1	0.0	-1.0	2.0	-0.2	-0.8	0.1	0.0
				Viento -X exc.+	0.9	-1.6	-0.1	0.9	0.1	0.0	0.9	-2.2	-0.2	0.9	0.1	0.0
				Viento -X exc Viento +Y exc.+	1.0 1.2	-1.5 -0.1	0.1 2.2	0.8	-0.1 -1.0	-0.0 0.0	1.0 1.2	-2.0 -0.1	0.2 3.0	0.8	-0.1 -1.0	-0.0 0.0
				Viento +Y exc	1.4	0.1	2.5	-0.1	-1.3	-0.0	1.4	0.2	3.5	-0.1	-1.3	-0.0
				Viento -Y exc.+	-1.2	0.1	-2.2	-0.0	1.0	-0.0	-1.2	0.1	-3.0	-0.0	1.0	-0.0
	Forjado 1	30x30	-0.15/3.40	Viento -Y exc Peso propio	-1.4 35.0	-0.1 1.7	-2.5 -2.4	0.1	1.3 -1.5	-0.0	-1.4 27.2	-0.2 -2.5	-3.5 3.0	0.1 1.2	1.3 -1.5	-0.0
	roijado i	30830	-0.13/3.40	Cargas muertas	30.5	2.5	-2.4	1.8	-1.3	0.0	30.5	-2.5	2.5	1.8	-1.3	0.0
				Sobrecarga de uso	4.2	0.2	-0.5	0.1	-0.3	-0.0	4.2	-0.3	0.6	0.1	-0.3	-0.0
				Q 1 (1) Q 1 (2)	9.0 4.9	0.3 0.2	-0.7 -0.9	0.2	-0.5 -0.6	0.0 -0.0	9.0 4.9	-0.5 -0.2	0.9 1.2	0.2	-0.5 -0.6	0.0 -0.0
				Q 1 (3)	0.7	0.2	-0.7	0.1	-0.1	0.0	0.7	-0.2	0.2	0.2	-0.1	0.0
				Q 1 (4)	-1.0	-0.1	0.2	-0.0	0.1	0.0	-1.0	0.0	-0.3	-0.0	0.1	0.0
				Viento +X exc.+ Viento +X exc	-0.9 -1.0	-3.8 -3.5	-0.3 0.3	-1.5 -1.4	-0.1 0.1	0.0 -0.0	-0.9 -1.0	1.6 1.5	0.1 -0.1	-1.5 -1.4	-0.1 0.1	0.0 -0.0
				Viento -X exc.+	0.9	3.8	0.3	1.5	0.1	-0.0	0.9	-1.6	-0.1	1.5	0.1	-0.0
				Viento -X exc	1.0	3.5	-0.3	1.4	-0.1	0.0	1.0	-1.5	0.1	1.4	-0.1	0.0
				Viento +Y exc.+ Viento +Y exc	1.2 1.4	0.1 -0.3	-4.9 -5.7	0.0 -0.1	-2.0 -2.3	-0.0 0.0	1.2 1.4	-0.1 0.1	2.2 2.5	0.0 -0.1	-2.0 -2.3	-0.0 0.0
				Viento -Y exc.+	-1.2	-0.1	4.9	-0.0	2.0	0.0	-1.2	0.1	-2.2	-0.0	2.0	0.0
				Viento -Y exc	-1.4	0.3	5.7	0.1	2.3	-0.0	-1.4	-0.1	-2.5	0.1	2.3	-0.0
P10	Forjado 2	30x30	3.40/4.15	Peso propio Cargas muertas	31.2 35.2	5.1 7.9	-11.8 -14.9	-0.2 -2.2	-23.6 -26.0	-0.0 0.0	29.5 35.2	5.3 9.5	5.9 4.6	-0.2 -2.2	-23.6 -26.0	-0.0 0.0
				Sobrecarga de uso	4.9	0.8	-14.9	0.1	-4.8	-0.0	4.9	0.7	1.1	0.1	-4.8	-0.0
				Q 1 (1)	7.5	-0.6	-0.4	-2.0	-2.3	0.1	7.5	1.0	1.3	-2.0	-2.3	0.1
				Q 1 (2) Q 1 (3)	4.0 -0.2	0.3 2.4	-0.8 -0.2	0.1 3.7	-3.5 -0.5	-0.0 0.0	4.0 -0.2	0.2 -0.4	1.8 0.2	0.1 3.7	-3.5 -0.5	-0.0 0.0
				Q 1 (4)	-0.2	0.1	-0.2	0.1	0.2	0.0	-0.5	-0.4	-0.3	0.1	0.2	0.0
				Viento +X exc.+	1.0	1.1	0.1	-1.0	0.1	0.0	1.0	1.9	0.0	-1.0	0.1	0.0
				Viento +X exc Viento -X exc.+	0.9 -1.0	1.0 -1.1	-0.1 -0.1	-1.0 1.0	-0.1 -0.1	-0.0 -0.0	0.9 -1.0	1.7 -1.9	-0.0 -0.0	-1.0 1.0	-0.1 -0.1	-0.0 -0.0
				Viento -X exc	-0.9	-1.0	0.1	1.0	0.1	0.0	-0.9	-1.7	0.0	1.0	0.1	0.0
				Viento +Y exc.+	0.9	-0.2	1.6	-0.3	-0.1	0.0	0.9	0.1	1.7	-0.3	-0.1	0.0
				Viento +Y exc Viento -Y exc.+	0.9 -0.9	0.3 0.2	1.9 -1.6	-0.0 0.3	0.3	0.0 -0.0	0.9 -0.9	0.3 -0.1	1.7 -1.7	-0.0 0.3	0.3	0.0 -0.0
				Viento -Y exc	-0.9	-0.3	-1.9	0.0	-0.3	-0.0	-0.9	-0.1	-1.7	0.0	-0.3	-0.0

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

		Dimensión	Tromas				Bas	е					Cabe	za		
Soporte	Planta	(cm)	Tramo (m)	Hipótesis	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)
	Forjado 1	30x30	-0.15/3.10	Peso propio	63.0	-0.2	-1.1	0.3	-1.0	-0.0	55.8	-1.1	2.0	0.3	-1.0	-0.0
	, , , , , ,			Cargas muertas	79.2	1.2	-2.2	1.7	-1.9	0.0	79.2	-4.3	4.0	1.7	-1.9	0.0
				Sobrecarga de uso	9.5	-0.1	-0.3	0.0	-0.2	0.0	9.5	-0.1	0.5	0.0	-0.2	0.0
				Q 1 (1)	7.2	0.1	0.6	0.1	0.4	-0.0	7.2	-0.3	-0.6	0.1	0.4	-0.0
				Q 1 (2)	4.0	-0.1	0.3	-0.1	0.3	-0.0	4.0	0.1	-0.5	-0.1	0.3	-0.0
				Q 1 (3)	0.0	-1.1	0.0	-0.8	0.0	0.0	0.0	1.6	-0.0	-0.8	0.0	0.0
				Q 1 (4)	-0.3	-0.1	-0.1	-0.0	-0.1	0.0	-0.3	0.1	0.1	-0.0	-0.1	0.0
				Viento +X exc.+	0.0	-5.2	-0.2	-2.6	-0.1	0.0	0.0	3.4	0.1	-2.6	-0.1	0.0
				Viento +X exc	-0.0	-4.7	0.2	-2.4	0.1	-0.0	-0.0	3.0	-0.2	-2.4	0.1	-0.0
				Viento -X exc.+	-0.0	5.2	0.2	2.6	0.1	-0.0	-0.0	-3.4	-0.1	2.6	0.1	-0.0
				Viento -X exc Viento +Y exc.+	0.0 3.6	4.7 0.3	-0.2 -8.1	2.4 0.2	-0.1 -4.5	-0.0	0.0	-3.0 -0.4	0.2 6.5	2.4 0.2	-0.1 -4.5	0.0 -0.0
				Viento +Y exc.+	3.7	-0.5	-8.1	-0.2	-4.5 -4.8	0.0	3.7	0.4	7.0	-0.2	-4.5	0.0
				Viento -Y exc	-3.6	-0.3	8.1	-0.2	4.5	0.0	-3.6	0.3	-6.5	-0.2	4.5	0.0
				Viento -Y exc	-3.7	0.5	8.7	0.2	4.8	-0.0	-3.7	-0.3	-7.0	0.2	4.8	-0.0
P11	Forjado 1	30x30	-0.15/2.80	Peso propio	54.2	-1.7	-1.5	-0.9	-1.1	-0.0	47.6	1.0	1.7	-0.9	-1.1	-0.0
	· 1			Cargas muertas	46.2	-2.9	-0.7	-1.6	-0.5	0.0	46.2	1.9	0.8	-1.6	-0.5	0.0
				Sobrecarga de uso	8.4	-0.3	-0.3	-0.2	-0.2	0.0	8.4	0.2	0.3	-0.2	-0.2	0.0
				Q 1 (1)	0.1	-0.1	-0.0	-0.0	-0.0	-0.0	0.1	0.0	0.0	-0.0	-0.0	-0.0
				Q 1 (2)	-0.0	0.0	0.0	0.0	0.0	-0.0	-0.0	-0.0	-0.0	0.0	0.0	-0.0
				Q 1 (3)	-0.3	-0.3	-0.0	-0.1	-0.0	0.0	-0.3	0.1	0.0	-0.1	-0.0	0.0
				Q 1 (4)	0.0	-0.1	-0.0	-0.0	-0.0	0.0	0.0	0.0	0.0	-0.0	-0.0	0.0
				Viento +X exc.+	-0.2	-5.6	0.2	-2.7	0.1	0.0	-0.2	2.4	-0.1	-2.7	0.1	0.0
				Viento +X exc	-0.1	-5.1	-0.2	-2.5	-0.1	-0.0	-0.1	2.1	0.1	-2.5	-0.1	-0.0
				Viento -X exc.+	0.2	5.6	-0.2	2.7	-0.1	-0.0	0.2	-2.4	0.1	2.7	-0.1	-0.0
				Viento -X exc Viento +Y exc.+	0.1 2.2	5.1 0.2	0.2 -8.1	2.5 0.1	0.1 -3.9	-0.0	0.1 2.2	-2.1 -0.1	-0.1 3.5	2.5 0.1	0.1 -3.9	0.0 -0.0
				Viento +Y exc.+	2.2	-0.6	-8.1	-0.3	-3.9	0.0	2.2	0.1	3.5	-0.3	-3.7	0.0
				Viento -Y exc.+	-2.2	-0.2	8.1	-0.3	3.9	0.0	-2.2	0.2	-3.5	-0.3	3.9	0.0
				Viento -Y exc	-2.0	0.6	7.6	0.3	3.7	-0.0	-2.0	-0.2	-3.3	0.3	3.7	-0.0
P12	Forjado 1	30x30	-0.15/3.10	Peso propio	20.6	-1.7	-1.3	-0.9	-0.9	-0.0	13.4	1.3	1.8	-0.9	-0.9	-0.0
	· 1			Cargas muertas	19.9	-2.7	-1.4	-1.5	-1.1	0.0	19.9	2.1	2.0	-1.5	-1.1	0.0
				Sobrecarga de uso	2.1	-0.3	-0.2	-0.1	-0.2	0.0	2.1	0.2	0.3	-0.1	-0.2	0.0
				Q 1 (1)	0.0	-0.0	-0.3	-0.0	-0.1	-0.0	0.0	0.0	0.1	-0.0	-0.1	-0.0
				Q 1 (2)	0.0	0.0	-0.0	0.0	-0.0	-0.0	0.0	-0.0	0.0	0.0	-0.0	-0.0
				Q 1 (3)	0.1	-0.3	0.0	-0.2	0.0	0.0	0.1	0.1	-0.0	-0.2	0.0	0.0
				Q 1 (4)	0.0	-0.1	0.0	-0.0	0.0	0.0	0.0	0.0	-0.0	-0.0	0.0	0.0
				Viento +X exc.+	1.1	-4.6	0.3	-1.9	0.1	0.0	1.1	1.7	-0.1	-1.9	0.1	0.0
				Viento +X exc	1.1 -1.1	-4.1	-0.3 -0.3	-1.7 1.9	-0.1 -0.1	-0.0 -0.0	1.1	1.6	0.1 0.1	-1.7 1.9	-0.1	-0.0 -0.0
				Viento -X exc.+ Viento -X exc	-1.1	4.6 4.1	0.3	1.9	0.1	0.0	-1.1 -1.1	-1.7 -1.6	-0.1	1.7	-0.1 0.1	0.0
				Viento -x exc Viento +Y exc.+	1.2	0.1	-6.6	0.0	-2.8	-0.0	1.2	-1.6	2.6	0.0	-2.8	-0.0
				Viento +Y exc.+	1.2	-0.5	-5.6	-0.2	-2.4	0.0	1.2	0.0	2.0	-0.2	-2.4	0.0
				Viento -Y exc.+	-1.2	-0.5	6.6	-0.2	2.8	0.0	-1.2	0.2	-2.6	-0.2	2.8	0.0
				Viento -Y exc	-1.2	0.5	5.6	0.2	2.4	-0.0	-1.2	-0.2	-2.2	0.2	2.4	-0.0
			1		2		1 0.0	J 0.2		0.0	2	0.2		0.2		

4.- ARRANQUES DE PILARES, PANTALLAS Y MUROS POR HIPÓTESIS

Nota

Los esfuerzos están referidos a ejes locales del pilar.

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

			Esfuerzos en arranques Mx My Qx Qy T (kN·m) (kN·m) (kN) (kN·m								
Soporte	Hipótesis	N (kN)			l		T (kN·m)				
P1	Peso propio	34.4	1.7	2.4	1.2	1.5	-0.0				
	Cargas muertas	29.5	2.5	2.0	1.8	1.3	0.0				
	Sobrecarga de uso	4.0	0.2	0.5	0.1	0.3	-0.0				
	Q 1 (1) Q 1 (2)	10.4	3.8	-0.1 -0.1	-0.0	-0.1 -0.1	-0.0				
	Q 1 (3)	0.6	0.3	0.1	0.2	0.1	0.0				
	Q 1 (4)	4.7	0.2	0.9	0.1	0.6	0.0				
	Viento +X exc.+	-1.0	-3.5	-0.3	-1.4	-0.1	0.0				
	Viento +X exc Viento -X exc.+	-0.9 1.0	-3.8 3.5	0.3	-1.5 1.4	0.1	-0.0 -0.0				
	Viento -X exc	0.9	3.8	-0.3	1.5	-0.1	0.0				
	Viento +Y exc.+	-1.2	-0.1	-4.9	-0.0	-2.0	-0.0				
	Viento +Y exc	-1.4	0.3	-5.7	0.1	-2.3	0.0				
	Viento -Y exc.+ Viento -Y exc	1.2	-0.3	4.9 5.7	-0.1	2.0	-0.0				
P2	Peso propio	61.9	-0.2	1.1	0.3	1.0	-0.0				
_	Cargas muertas	77.4	1.2	2.2	1.7	1.9	0.0				
	Sobrecarga de uso	9.2	-0.1	0.3	0.0	0.2	0.0				
	Q 1 (1)	9.4	-1.5	0.4	-1.0	0.2	-0.0				
	Q 1 (2) Q 1 (3)	-0.2 -0.1	-0.1 -1.1	0.1	-0.0 -0.8	0.1	-0.0 0.0				
	Q 1 (4)	3.8	-0.1	-0.3	-0.1	-0.3	0.0				
	Viento +X exc.+	-0.0	-4.7	-0.2	-2.4	-0.1	0.0				
	Viento +X exc Viento -X exc.+	0.0	-5.2 4.7	0.2	-2.6 2.4	0.1	-0.0 -0.0				
	Viento -X exc	-0.0	5.2	-0.2	2.4	-0.1	0.0				
	Viento +Y exc.+	-3.6	-0.3	-8.1	-0.2	-4.5	-0.0				
	Viento +Y exc	-3.7	0.5	-8.7	0.2	-4.8	0.0				
	Viento -Y exc.+ Viento -Y exc	3.6 3.7	-0.5	8.1 8.7	-0.2	4.5	-0.0				
P3	Peso propio	52.9	-1.8	1.5	-0.9	1.0	-0.0				
	Cargas muertas	45.1	-2.9	0.7	-1.6	0.5	0.0				
	Sobrecarga de uso Q 1 (1)	8.0	-0.3 -0.7	-0.0	-0.2	-0.0	-0.0				
	Q 1 (1)	0.0	-0.1	0.0	-0.0	0.0	-0.0				
	Q 1 (3)	-0.3	-0.3	-0.0	-0.1	-0.0	0.0				
	Q 1 (4) Viento +X exc.+	-0.0	0.0 -5.1	-0.0	-2.5	-0.0	0.0				
	Viento +X exc.+	-0.1 -0.2	-5.6	-0.2	-2.5	0.1	-0.0				
	Viento -X exc.+	0.1	5.1	-0.2	2.5	-0.1	-0.0				
	Viento -X exc	0.2	5.6	0.2	2.7	0.1	0.0				
	Viento +Y exc.+ Viento +Y exc	-2.2 -2.0	-0.2 0.6	-8.1 -7.6	-0.1	-3.9 -3.7	-0.0 0.0				
	Viento -Y exc.+	2.2	0.2	8.1	0.3	3.9	0.0				
	Viento -Y exc	2.0	-0.6	7.6	-0.3	3.7	-0.0				
P4	Peso propio	20.4	-1.7	1.3	-0.9	0.9	-0.0				
	Cargas muertas Sobrecarga de uso	19.5 2.1	-2.7 -0.3	1.4 0.2	-1.5 -0.1	1.1 0.2	0.0				
	Q 1 (1)	0.2	-0.3	-0.3	-0.1	-0.1	-0.0				
	Q 1 (2)	0.0	-0.1	-0.0	-0.0	-0.0	-0.0				
	Q 1 (3)	0.1	-0.3	-0.0	-0.2	-0.0	0.0				
	Q 1 (4) Viento +X exc.+	0.0	0.0 -4.1	0.0	0.0	0.0	0.0				
	Viento +X exc	1.1	-4.6	-0.3	-1.9	-0.1	-0.0				
	Viento -X exc.+	-1.1	4.1	-0.3	1.7	-0.1	-0.0				
	Viento -X exc	-1.1	4.6	0.3	1.9	0.1	0.0				
	Viento +Y exc.+ Viento +Y exc	-1.2 -1.2	-0.1 0.5	-6.6 -5.6	-0.0 0.2	-2.8 -2.4	-0.0 0.0				
	Viento -Y exc.+	1.2	0.1	6.6	0.0	2.8	0.0				
	Viento -Y exc	1.2	-0.5	5.6	-0.2	2.4	-0.0				

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

			Esfue	rzos en a	arrano	ques	
Soporte	Hipótesis	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)
P5	Peso propio	75.8	3.0	0.0	2.0	0.0	-0.0
	Cargas muertas	57.5	1.7	0.0	1.3	0.0	0.0
	Sobrecarga de uso	12.7	0.6	0.0	0.4	0.0	-0.0
	Q 1 (1)	3.0	0.5	0.3	0.2	0.2	0.0
	Q 1 (2) Q 1 (3)	7.3	0.2	0.9	0.1	0.5	-0.0 0.0
	Q 1 (4)	7.6	0.2	-0.9	0.1	-0.5	0.0
	Viento +X exc.+	-0.9	-3.6	-0.3	-1.4	-0.1	0.0
	Viento +X exc	-0.9	-3.6	0.3	-1.4	0.1	-0.0
	Viento -X exc.+	0.9	3.6	0.3	1.4	0.1	-0.0
	Viento -X exc Viento +Y exc.+	0.9	3.6 0.0	-0.3 -5.3	0.0	-0.1 -2.2	-0.0
	Viento +Y exc	0.0	0.0	-6.2	0.0	-2.6	0.0
	Viento -Y exc.+	-0.0	-0.0	5.3	-0.0	2.2	0.0
	Viento -Y exc	-0.0	-0.0	6.2	-0.0	2.6	-0.0
P6	Peso propio	115.6	0.7	0.0	1.0	0.0	-0.0
	Cargas muertas Sobrecarga de uso	120.9	-0.1 0.3	0.0	0.6	0.0	0.0
	Q 1 (1)	1.1	-1.3	0.0	-0.9	0.0	-0.0
	Q 1 (2)	4.9	-0.0	-0.1	-0.0	-0.1	-0.0
	Q 1 (3)	8.8	-0.0	-0.0	0.1	-0.0	0.0
	Q 1 (4)	5.2	-0.0	0.1	-0.0	0.1	0.0
	Viento +X exc.+ Viento +X exc	0.0	-4.9 -4.9	-0.2 0.2	-2.5 -2.5	-0.1 0.1	-0.0
	Viento -X exc.+	-0.0	4.9	0.2	2.5	0.1	-0.0
	Viento -X exc	-0.0	4.9	-0.2	2.5	-0.1	0.0
	Viento +Y exc.+	0.0	-0.0	-8.8	-0.0	-5.1	-0.0
	Viento +Y exc Viento -Y exc.+	0.0	-0.0	-9.4 8.8	-0.0	-5.4 5.1	0.0
	Viento -Y exc	-0.0 -0.0	0.0	9.4	0.0	5.4	-0.0
P7	Peso propio	143.4	-1.7	0.0	-0.9	0.0	-0.0
	Cargas muertas	73.6	-2.0	0.0	-1.0	0.0	0.0
	Sobrecarga de uso Q 1 (1)	28.2 -0.3	-0.4 -0.3	-0.0	-0.2 -0.1	-0.0	-0.0
	Q 1 (1)	-0.0	-0.0	0.0	-0.1	0.0	-0.0
	Q 1 (3)	0.1	-0.4	-0.0	-0.2	-0.0	0.0
	Q 1 (4)	0.0	-0.0	-0.0	-0.0	-0.0	0.0
	Viento +X exc.+	-0.3	-5.3	0.2	-2.5	0.1	0.0
	Viento +X exc Viento -X exc.+	-0.3 0.3	-5.3 5.3	-0.2 -0.2	-2.5 2.5	-0.1 -0.1	-0.0 -0.0
	Viento -X exc	0.3	5.3	0.2	2.5	0.1	0.0
	Viento +Y exc.+	0.0	-0.0	-8.3	-0.0	-4.1	-0.0
	Viento +Y exc	0.0	-0.0	-7.8	-0.0	-3.8	0.0
	Viento -Y exc.+ Viento -Y exc	-0.0 -0.0	0.0	8.3	0.0	4.1 3.8	-0.0
P8	Peso propio	42.0	-2.4	0.0	-1.4	0.0	-0.0
	Cargas muertas	40.3	-2.8	0.0	-1.6	0.0	0.0
	Sobrecarga de uso	6.3	-0.5	0.0	-0.3	0.0	0.0
	Q 1 (1)	0.2	-0.4	-0.3	-0.2	-0.1	-0.0
	Q 1 (2) Q 1 (3)	0.0	-0.0 -0.3	-0.0 -0.0	-0.0 -0.1	-0.0 0.0	-0.0 0.0
	Q 1 (4)	0.0	-0.0	0.0	-0.1	0.0	0.0
	Viento +X exc.+	1.1	-4.4	0.3	-1.9	0.2	0.0
	Viento +X exc	1.1	-4.4	-0.3	-1.9	-0.1	-0.0
	Viento -X exc.+	-1.1	4.4	-0.3	1.9	-0.2	-0.0
	Viento -X exc Viento +Y exc.+	-1.1 -0.0	4.4 0.0	0.3 -6.9	1.9	-3.1	-0.0
	Viento +Y exc	-0.0	0.0	-5.9	0.0	-2.6	0.0
	Viento -Y exc.+	0.0	-0.0	6.9	-0.0	3.1	0.0
	Viento -Y exc	0.0	-0.0	5.9	-0.0	2.6	-0.0

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

			Esfue	rzos en a	arrano	ques	
Soporte	Hipótesis	N (kN)	Mx (kN·m)	My (kN·m)	Qx (kN)	Qy (kN)	T (kN·m)
P9	Peso propio	35.0	1.7	-2.4	1.2	-1.5	-0.0
	Cargas muertas	30.5	2.5	-2.0	1.8	-1.3	0.0
	Sobrecarga de uso	4.2	0.2	-0.5	0.1	-0.3	-0.0
	Q 1 (1) Q 1 (2)	9.0 4.9	0.3	-0.7 -0.9	0.2	-0.5 -0.6	-0.0
	Q 1 (3)	0.7	0.2	-0.7	0.1	-0.1	0.0
	Q 1 (4)	-1.0	-0.1	0.2	-0.0	0.1	0.0
	Viento +X exc.+	-0.9	-3.8	-0.3	-1.5	-0.1	0.0
	Viento +X exc Viento -X exc.+	-1.0 0.9	-3.5 3.8	0.3	1.5	0.1	-0.0 -0.0
	Viento -X exc	1.0	3.5	-0.3	1.4	-0.1	0.0
	Viento +Y exc.+	1.2	0.1	-4.9	0.0	-2.0	-0.0
	Viento +Y exc	1.4	-0.3	-5.7	-0.1	-2.3	0.0
	Viento -Y exc.+ Viento -Y exc	-1.2 -1.4	-0.1 0.3	4.9 5.7	-0.0 0.1	2.0	-0.0
P10	Peso propio	63.0	-0.2	-1.1	0.3	-1.0	-0.0
	Cargas muertas	79.2	1.2	-2.2	1.7	-1.9	0.0
	Sobrecarga de uso	9.5	-0.1	-0.3	0.0	-0.2	0.0
	Q 1 (1)	7.2	0.1	0.6	0.1	0.4	-0.0
	Q 1 (2) Q 1 (3)	4.0 0.0	-0.1 -1.1	0.3	-0.1 -0.8	0.3	-0.0 0.0
	Q 1 (4)	-0.3	-0.1	-0.1	-0.0	-0.1	0.0
	Viento +X exc.+	0.0	-5.2	-0.2	-2.6	-0.1	0.0
	Viento +X exc Viento -X exc.+	-0.0 -0.0	-4.7 5.2	0.2	-2.4 2.6	0.1	-0.0 -0.0
	Viento -X exc.+	0.0	4.7	-0.2	2.4	-0.1	0.0
	Viento +Y exc.+	3.6	0.3	-8.1	0.2	-4.5	-0.0
	Viento +Y exc	3.7	-0.5	-8.7	-0.2	-4.8	0.0
	Viento -Y exc.+ Viento -Y exc	-3.6 -3.7	-0.3 0.5	8.1 8.7	-0.2 0.2	4.5	-0.0
P11	Peso propio	54.2	-1.7	-1.5	-0.9	-1.1	-0.0
	Cargas muertas	46.2	-2.9	-0.7	-1.6	-0.5	0.0
	Sobrecarga de uso Q 1 (1)	8.4 0.1	-0.3 -0.1	-0.3 -0.0	-0.2 -0.0	-0.2	-0.0
	Q 1 (1)	-0.0	0.0	0.0	0.0	0.0	-0.0
	Q 1 (3)	-0.3	-0.3	-0.0	-0.1	-0.0	0.0
	Q 1 (4)	0.0	-0.1	-0.0	-0.0	-0.0	0.0
	Viento +X exc.+ Viento +X exc	-0.2 -0.1	-5.6 -5.1	-0.2	-2.7 -2.5	0.1	-0.0
	Viento -X exc.+	0.1	5.6	-0.2	2.7	-0.1	-0.0
	Viento -X exc	0.1	5.1	0.2	2.5	0.1	0.0
	Viento +Y exc.+ Viento +Y exc	2.2	-0.6	-8.1	0.1	-3.9	-0.0
	Viento + Y exc	2.0 -2.2	-0.6	-7.6 8.1	-0.3 -0.1	-3.7 3.9	0.0
	Viento -Y exc	-2.0	0.6	7.6	0.3	3.7	-0.0
P12	Peso propio	20.6	-1.7	-1.3	-0.9	-0.9	-0.0
	Cargas muertas	19.9	-2.7	-1.4	-1.5	-1.1	0.0
	Sobrecarga de uso Q 1 (1)	2.1 0.0	-0.3 -0.0	-0.2 -0.3	-0.1 -0.0	-0.2 -0.1	-0.0
	Q 1 (2)	0.0	0.0	-0.0	0.0	-0.0	-0.0
	Q 1 (3)	0.1	-0.3	0.0	-0.2	0.0	0.0
	Q 1 (4) Viento +X exc.+	0.0	-0.1	0.0	-0.0 -1.9	0.0	0.0
	Viento +X exc.+	1.1 1.1	-4.6 -4.1	-0.3	-1.9	-0.1	-0.0
	Viento -X exc.+	-1.1	4.6	-0.3	1.9	-0.1	-0.0
	Viento -X exc	-1.1	4.1	0.3	1.7	0.1	0.0
	Viento +Y exc.+ Viento +Y exc	1.2	0.1 -0.5	-6.6 5.6	0.0	-2.8 -2.4	-0.0 0.0
	Viento + Y exc	1.2 -1.2	-0.5	-5.6 6.6	-0.2 -0.0	2.8	0.0
	Viento -Y exc	-1.2	0.5	5.6	0.2	2.4	-0.0

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

5.- PÉSIMOS DE PILARES, PANTALLAS Y MUROS

5.1.- Pilares

				Resum	en de las cor	nproba	ciones						
		Tromo				Esfu	erzos pé:	simos				A prov	
Pilares	Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Pésima	Aprov. (%)	Estado
P1	Forjado 2	0.00/4.65	30x30	Cabeza	G, Q, V	96.4	14.0	21.3	-7.6	5.2	N,M	37.7	Cumple
	Forjado 1	0.00/ 4.00	30,30	Cabeza	G, Q, V	98.2	7.7	17.0	-9.1	3.9	N,M	24.3	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, Q, V	109.2	-11.5	-11.4	-7.6	6.1	N,M	20.5	Cumple
	Omnormation.	0.20, 0.00	00,00	Pie	G, Q, V	108.7	-6.1	-15.1	-9.1	3.9	N,M	19.5	Cumple
P2	Forjado 2	3.55/4.65	30x30	Pie	G, Q, V	93.9	-41.5	-22.1	-2.5	74.5	N,M	81.3	Cumple
	Torjado 2	0.007 1.00	ООХОО	Cabeza	G, Q, V	97.8	16.8	-21.0	2.9	79.1	Q	78.7	Cumple
	Forjado 1	0.00/3.55	30x30	3.40 m	G, Q, V	93.9	-41.5	-22.1	-2.5	74.5	N,M	81.3	Cumple
				3.40 m	G, Q, V	100.1	-42.5	-18.8	2.9	79.1	N,M	80.4	Cumple
	Cimentación	-0.27/0.00	30x30	Pie	G, V	193.6	-17.5	-0.5	-2.2	11.1	N,M	19.2	Cumple
P3	Forjado 1	0.00/3.55	30x30	Pie	G, V	135.2	-14.3	7.2	3.9	7.7	N,M	19.0	Cumple
				Cabeza	G, V	126.7	8.6	-3.8	3.3	8.0	Q	12.3	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	135.2	-14.3	7.2	3.9	7.7	N,M	19.0	Cumple
				Pie	G, V	135.5	-15.1	6.0	3.3	8.0	N,M	18.9	Cumple
P4	Forjado 1	0.00/3.55	30x30	Pie	G, V	55.7	-13.4	5.7	3.2	6.9	N,M	20.9	Cumple
				Cabeza	G, V	46.0	9.0	-4.6	3.2	6.9	N,M	13.7	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	55.7	-13.4	5.7	3.2	6.9	N,M	20.9	Cumple
P5	Forjado 2	0.00/4.65	30x30	Cabeza	G, Q, V	202.1	-0.1	25.1	-9.0	-0.1	N,M	27.5	Cumple
	Forjado 1	0.007 1.00		Cabeza	G, Q, V	204.3	0.2	18.3	-9.6	0.2	N,M	20.1	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, Q, V	214.9	-0.4	-15.7	-9.6	0.2	N,M	18.5	Cumple
P6	Forjado 2	3.55/4.65	30x30	Cabeza	G, Q, V	184.2	0.3	-33.9	22.8	0.9	N,M	39.0	Cumple
	Torjado 2	0.007 1.00	ООХОО	Cabeza	G, Q, V	183.4	2.0	-32.3	22.3	5.2	N,M	36.9	Cumple
	Forjado 1	0.00/3.55	30x30	3.40 m	G, Q, V	174.3	-1.8	-22.3	2.1	4.2	N,M	23.3	Cumple
				Cabeza	G, V	229.3	12.5	4.6	-1.6	8.2	N,M	18.0	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	319.2	-14.1	-0.8	-2.2	8.2	N,M	21.7	Cumple
P7	Forjado 1	0.00/3.55	30x30	Pie	G, Q, V	335.1	-0.2	10.9	5.4	0.1	N,M	20.8	Cumple
	- January			Cabeza	G, V	210.4	5.7	-1.8	1.8	6.1	N,M	12.6	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, Q, V	335.1	-0.2	10.9	5.4	0.1	N,M	20.8	Cumple
				Pie	G, V	292.9	-12.4	4.9	2.5	6.1	N,M	20.5	Cumple
P8	Forjado 1	0.00/3.55	30x30	Pie	G, V	111.1	-10.4	7.0	4.1	4.7	N,M	15.3	Cumple
	. ,			Cabeza	G, V	103.2	0.2	-8.8	6.9	0.2	Q	10.2	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	111.1	-10.4	7.0	4.1	4.7	N,M	15.3	Cumple
				Pie	G, V	112.9	-0.5	13.6	6.9	0.2	N,M	14.8	Cumple
P9	Forjado 2	0.00/4.65	30x30	Cabeza	G, Q, V	90.5	-17.1	12.6	-4.3	-6.3	N,M	30.4	Cumple
	Forjado 1			Cabeza	G, V	80.0	-11.2	8.5	-3.9	-7.2	N,M	18.7	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	90.5	14.5	-5.2	-3.9	-7.2	N,M	18.9	Cumple
				Pie	G, Q, V	103.3	13.1	-6.0	-4.3	-7.2	N,M	17.3	Cumple
P10	Forjado 2	3.55/4.65	30x30	Pie	G, Q, V	95.8	41.8	-22.2	-2.5	-75.3	N,M	62.2	Cumple
	-			Cabeza	G, Q, V	99.9	-17.1	-21.1	2.9	-79.8	Q	46.5	Cumple
	Forjado 1	0.00/3.55	30x30	3.40 m	G, Q, V	95.8	41.8	-22.2	-2.5	-75.3	N,M	62.2	Cumple
	Cimonto siá-	0.35 /0.00	20,20	3.40 m	G, Q, V	102.1	42.8	-18.9	2.9	-79.8	N,M	59.9	Cumple
Des	Cimentación	-0.35/0.00	30x30	Pie	G, V	197.5	17.5	-0.6	-2.3	-11.1	N,M	18.0	Cumple
P11	Forjado 1	0.00/3.55	30x30	Pie	G, V	138.4	14.3	7.2	3.9	-7.7	N,M	19.0	Cumple
				Cabeza	G, V	129.9	-8.7	-3.8	3.3	-8.1	Q	12.3	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	138.4	14.3	7.2	3.9	-7.7	N,M	19.0	Cumple
Dan				Pie	G, V	138.7	15.1	6.0	3.3	-8.1	N,M	18.8	Cumple
P12	Forjado 1	0.00/3.55	30x30	Pie	G, V	56.5	13.4	5.7	3.2	-6.9	N,M	20.7	Cumple
	Cina a nt = -! f	0.20/0.00	20::20	Cabeza	G, V	46.8	-9.0	-4.6	3.2	-6.9	N,M	13.6	Cumple
	Cimentación	-0.20/0.00	30x30	Pie	G, V	56.5	13.4	5.7	3.2	-6.9	N,M	20.7	Cumple

as:

N.M: Estado limite de agotamiento frente a solicitaciones normales (combinaciones no sismicas)

Q: Estado limite de agotamiento frente a cortante (combinaciones no sismicas)

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

6.- SUMATORIO DE ESFUERZOS DE PILARES, PANTALLAS Y MUROS POR HIPÓTESIS Y PLANTA

- Sólo se tienen en cuenta los esfuerzos de pilares, muros y pantallas, por lo que si la obra tiene vigas con vinculación exterior, vigas inclinadas, diagonales o estructuras 3D integradas, los esfuerzos de dichos elementos no se muestran en el siguiente listado.
- Este listado es de utilidad para conocer las cargas actuantes por encima de la cota de la base de los soportes sobre una planta, por lo que para casos tales como pilares apeados traccionados, los esfuerzos de dichos pilares tendrán la influencia no sólo de las cargas por encima sino también la de las cargas que recibe de plantas inferiores.

6.1.- Resumido

		Valores referidos al c	origen ((X=0.00,	Y=0.00)			
DI t -	Cota	Lillia XII a alla	N	Mx	My	Qx	Qy	T
Planta	(m)	Hipótesis	(kN)	(kN·m)	(kN·m)	(kN)	(kN)	(kN·m)
Forjado 1	3.40	Peso propio	246.1	627.7	1088.3	0.0	0.0	-0.0
		Cargas muertas	239.0	608.0	1057.4	0.0	0.0	-0.0
		Sobrecarga de uso	42.2	107.5	187.0	0.0	-0.0	-0.0
		Q 1 (1)	40.0	91.1	161.9	0.0	-0.0	0.0
		Q 1 (2)	20.0	45.0	130.9	-0.0	-0.0	-0.0
		Q 1 (3)	20.0	45.2	88.9	0.0	0.0	-0.0
		Q 1 (4)	20.0	45.0	46.9	0.0	0.0	0.0
		Viento +X exc.+	-0.0	5.6	-0.0	5.1	0.0	-24.5
		Viento +X exc	-0.0	5.6	-0.0	5.1	0.0	-20.0
		Viento -X exc.+	0.0	-5.6	0.0	-5.1	-0.0	24.5
		Viento -X exc	0.0	-5.6	0.0	-5.1	-0.0	20.0
		Viento +Y exc.+	-0.0	-0.0	9.1	0.0	8.3	23.3
		Viento +Y exc	-0.0	0.0	9.1	-0.0	8.3	19.0
		Viento -Y exc.+	0.0	0.0	-9.1	-0.0	-8.3	-23.3
		Viento -Y exc	0.0	-0.0	-9.1	0.0	-8.3	-19.0
Cimentación	-0.15	Peso propio	719.2	4862.0	3177.5	-0.0	0.0	0.0
		Cargas muertas	639.5	4138.9	2831.8	-0.0	0.0	0.0
		Sobrecarga de uso	116.2	794.5	515.4	-0.0	0.0	0.0
		Q 1 (1)	40.0	91.1	161.9	0.0	0.0	0.0
		Q 1 (2)	20.0	45.0	130.9	0.0	0.0	-0.0
		Q 1 (3)	20.0	45.2	88.9	0.0	-0.0	-0.0
		Q 1 (4)	20.0	45.0	46.9	0.0	-0.0	0.0
		Viento +X exc.+	-0.0	94.3	-0.0	25.0	-0.0	-120.2
		Viento +X exc	-0.0	94.3	-0.0	25.0	0.0	-99.8
		Viento -X exc.+	0.0	-94.3	0.0	-25.0	0.0	120.2
		Viento -X exc	0.0	-94.3	0.0	-25.0	-0.0	99.8
		Viento +Y exc.+	0.0	0.0	154.7	0.0	41.0	312.8
		Viento +Y exc	0.0	0.0	154.7	0.0	41.0	281.9
		Viento -Y exc.+	-0.0	-0.0	-154.7	-0.0	-41.0	-312.8
		Viento -Y exc	-0.0	-0.0	-154.7	-0.0	-41.0	-281.9

Apéndice nº 4.- ELU Pilares

ÍNDICE

1	NOTACIÓN (PILARES)	2
2	PILARES	
	2.1 P1	2
	2.2 P2	2
	2.3 P3	
	2.4 P4	2
	2.5 P5	
	2.6 P6	3
	2.7 P7	
	2.8 P8	
	2.9 P9	3
	2.10 P10	
	2.11 P11	4
	2.12 - D12	1

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

1.- NOTACIÓN (PILARES)

En las tablas de comprobación de pilares de acero no se muestran las comprobaciones con coeficiente de aprovechamiento inferior al 10%.

Disp.: Disposiciones relativas a las armaduras

Arm.: Armadura mínima y máxima

Q: Estado límite de agotamiento frente a cortante (combinaciones no sísmicas)

N,M: Estado límite de agotamiento frente a solicitaciones normales (combinaciones no sísmicas)

2.- PILARES

2.1.- P1

	Secciones de hormigón														
	Tramo				Esfu	erzos pés	imos				Compro	bacio	nes		
Planta	(m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 2	0.00/4.65	30x30	Cabeza	G, Q, V	96.4	14.0	21.3	-7.6	5.2	Cumple	Cumple	13.8	37.7	37.7	Cumple
Forjado 1		30830	Cabeza	G, Q, V	98.2	7.7	17.0	-9.1	3.9	Cumple	Cumple	14.7	24.3	24.3	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, Q, V	109.2	-11.5	-11.4	-7.6	6.1	N.P.	N.P.	2.1	20.5	20.5	Cumple
Cimentacion	-0.20/0.00	30830	Pie	G, Q, V	108.7	-6.1	-15.1	-9.1	3.9	N.P.	N.P.	2.1	19.5	19.5	Cumple

2.2.- P2

Secciones de hormigón															
	Tromo				Esfu	erzos pés	imos				Compro	bacio	nes		
Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Disp. Arm. (%) (%) (%) Cumple Cumple 55.3 81.3 81.3 C	Estado			
F:	3.55/4.65	30x30	Pie	G, Q, V	93.9	-41.5	-22.1	-2.5	74.5	Cumple	Cumple	55.3	81.3	81.3	Cumple
Forjado 2	3.55/4.65	30X30	Cabeza	G, Q, V	97.8	16.8	-21.0	2.9	79.1	Cumple	Cumple	78.7	40.4	78.7	Cumple
Foriodo 1	0.00/3.55	30x30	3.40 m	G, Q, V	93.9	-41.5	-22.1	-2.5	74.5	N.P.	N.P.	16.2	81.3	81.3	Cumple
Forjado 1	0.00/3.55	30X30	3.40 m	G, Q, V	100.1	-42.5	-18.8	2.9	79.1	N.P.	N.P.	17.2	80.4	80.4	Cumple
Cimentación	-0.27/0.00	30x30	Pie	G, V	193.6	-17.5	-0.5	-2.2	11.1	N.P.	N.P.	2.4	19.2	19.2	Cumple

2.3.- P3

Secciones de hormigón															
	Tramo				Esfu	erzos pés	imos				Compro	bacio	nes		
Planta	(m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 1	0.00/3.55	30x30	Pie	G, V	135.2	-14.3	7.2	3.9	7.7	Cumple	Cumple	12.0	19.0	19.0	Cumple
roijado i	0.00/3.55	30X30	Cabeza	G, V	126.7	8.6	-3.8	3.3	8.0	Cumple	Cumple	12.3	11.8	12.3	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, V	135.2	-14.3	7.2	3.9	7.7	N.P.	N.P.	1.9	19.0	19.0	Cumple
Cimentación	-0.20/0.00	30X30	Pie	G, V	135.5	-15.1	6.0	3.3	8.0	N.P.	N.P.	1.9	18.9	18.9	Cumple

2.4.- P4

	Secciones de hormigón														
	Tramo				Esfu	ierzos pé	simos				Compro	bacio	nes		
Planta	(m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 1	0.00/3.55	30x30	Pie	G, V	55.7	-13.4	5.7	3.2	6.9	Cumple	Cumple	12.4	20.9	20.9	Cumple
roijado i	0.00/3.33	30830	Cabeza	G, V	46.0	9.0	-4.6	3.2	6.9	Cumple	Cumple	12.6	13.7	13.7	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, V	55.7	-13.4	5.7	3.2	6.9	N.P.	N.P.	1.6	20.9	20.9	Cumple

PALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

2.5.- P5

					Secci	ones de l	normigón								
	Tromo				Esfu	erzos pés	imos				Compro	bacio	nes		
Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 2	0.00/4.65	30x30	Cabeza	G, Q, V	202.1	-0.1	25.1	-9.0	-0.1	Cumple	Cumple	11.2	27.5	27.5	Cumple
Forjado 1	0.00/4.65	30X30	Cabeza	G, Q, V	204.3	0.2	18.3	-9.6	0.2	Cumple	Cumple	11.9	20.1	20.1	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, Q, V	214.9	-0.4	-15.7	-9.6	0.2	N.P.	N.P.	2.0	18.5	18.5	Cumple

2.6.- P6

					Seccio	ones de h	ormigón								
	Tromo				Esfu	erzos pés	imos				Compro	bacio	nes		
Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Foriodo 2	3.55/4.65	30x30	Cabeza	G, Q, V	184.2	0.3	-33.9	22.8	0.9	Cumple	Cumple	29.3	39.0	39.0	Cumple
Forjado 2	3.55/4.65	30830	Cabeza	G, Q, V	183.4	2.0	-32.3	22.3	5.2	Cumple	Cumple	29.4	36.9	36.9	Cumple
Foriodo 1	0.00/3.55	30x30	3.40 m	G, Q, V	174.3	-1.8	-22.3	2.1	4.2	N.P.	N.P.	1.0	23.3	23.3	Cumple
Forjado 1	0.00/3.55	30830	Cabeza	G, V	229.3	12.5	4.6	-1.6	8.2	Cumple	Cumple	10.0	18.0	18.0	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, V	319.2	-14.1	-0.8	-2.2	8.2	N.P.	N.P.	1.8	21.7	21.7	Cumple

2.7.- P7

					Seccio	nes de h	ormigón								
	Tromo				Esfu	erzos pés	imos				Comprol	oacio	nes		
Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forio do 1	0.00/3.55	30x30	Pie	G, Q, V	335.1	-0.2	10.9	5.4	0.1	Cumple	Cumple	5.5	20.8	20.8	Cumple
Forjado 1	0.00/3.55	30830	Cabeza	G, V	210.4	5.7	-1.8	1.8	6.1	Cumple	Cumple	7.9	12.6	12.6	Cumple
Cimantagián	-0.20/0.00	30x30	Pie	G, Q, V	335.1	-0.2	10.9	5.4	0.1	N.P.	N.P.	1.2	20.8	20.8	Cumple
Cimentación	-0.20/0.00	30X30	Pie	G, V	292.9	-12.4	4.9	2.5	6.1	N.P.	N.P.	1.4	20.5	20.5	Cumple

2.8.- P8

					Seccio	nes de h	ormigón								
	Esfuerzos pésimos Comprobaciones														
Planta	(m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 1	0.00/3.55	30x30	Pie	G, V	111.1	-10.4	7.0	4.1	4.7	Cumple	Cumple	9.0	15.3	15.3	Cumple
roijado i	0.00/3.33	30830	Cabeza	G, V	103.2	0.2	-8.8	6.9	0.2	Cumple	Cumple	10.2	9.8	10.2	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, V	111.1	-10.4	7.0	4.1	4.7	N.P.	N.P.	1.3	15.3	15.3	Cumple
Cimentacion	-0.20/0.00	30X30	Pie	G, V	112.9	-0.5	13.6	6.9	0.2	N.P.	N.P.	1.5	14.8	14.8	Cumple

2.9.- P9

					Secci	ones de h	ormigón								
	Tramo		Esfuerzos pésimos Comprobaciones												
Planta	(m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 2	0.00/4.65	30x30	Cabeza	G, Q, V	90.5	-17.1	12.6	-4.3	-6.3	Cumple	Cumple	11.6	30.4	30.4	Cumple
Forjado 1	0.00/4.03	30830	Cabeza	G, V	80.0	-11.2	8.5	-3.9	-7.2	Cumple	Cumple	12.7	18.7	18.7	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, V	90.5	14.5	-5.2	-3.9	-7.2	N.P.	N.P.	1.8	18.9	18.9	Cumple
Cimentacion	-0.20/0.00	30830	Pie	G, Q, V	103.3	13.1	-6.0	-4.3	-7.2	N.P.	N.P.	1.8	17.3	17.3	Cumple

PACTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

2.10.- P10

					Secci	ones de l	normigór	1							
	T				Esfu	erzos pé	simos				Comprol	bacio	nes		
Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 2	3.55/4.65	30x30	Pie	G, Q, V	95.8	41.8	-22.2	-2.5	-75.3	Cumple	Cumple	44.0	62.2	62.2	Cumple
FOIJado 2	3.55/4.65	30830	Cabeza	G, Q, V	99.9	-17.1	-21.1	2.9	-79.8	Cumple	Cumple	46.5	33.0	46.5	Cumple
Foriodo 1	0.00/3.55	30x30	3.40 m	G, Q, V	95.8	41.8	-22.2	-2.5	-75.3	N.P.	N.P.	18.7	62.2	62.2	Cumple
Forjado 1	0.00/3.55	30830	3.40 m	G, Q, V	102.1	42.8	-18.9	2.9	-79.8	N.P.	N.P.	19.8	59.9	59.9	Cumple
Cimentación	-0.35/0.00	30x30	Pie	G, V	197.5	17.5	-0.6	-2.3	-11.1	N.P.	N.P.	2.8	18.0	18.0	Cumple

2.11.- P11

					Seccio	ones de h	normigón								
	Tramo C														
Planta	(m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Forjado 1	0.00/3.55	30x30	Pie	G, V	138.4	14.3	7.2	3.9	-7.7	Cumple	Cumple	12.0	19.0	19.0	Cumple
roijado i	0.00/3.33	30830	Cabeza	G, V	129.9	-8.7	-3.8	3.3	-8.1	Cumple	Cumple	12.3	11.9	12.3	Cumple
Cimantagián	-0.20/0.00	30x30	Pie	G, V	138.4	14.3	7.2	3.9	-7.7	N.P.	N.P.	1.9	19.0	19.0	Cumple
Cimentación	-0.20/0.00	30830	Pie	G, V	138.7	15.1	6.0	3.3	-8.1	N.P.	N.P.	1.9	18.8	18.8	Cumple

2.12.- P12

					Secci	ones de l	normigór	1							
	Tromo				Esfu	ierzos pé	simos				Compro	bacio	nes		
Planta	Tramo (m)	Dimensión	Posición	Naturaleza	N (kN)	Mxx (kN·m)	Myy (kN·m)	Qx (kN)	Qy (kN)	Disp.	Arm.	Q (%)	N,M (%)	Aprov. (%)	Estado
Foriodo 1	0.00/3.55	30x30	Pie	G, V	56.5	13.4	5.7	3.2	-6.9	Cumple	Cumple	12.3	20.7	20.7	Cumple
Forjado 1	0.00/3.55	30830	Cabeza	G, V	46.8	-9.0	-4.6	3.2	-6.9	Cumple	Cumple	12.6	13.6	13.6	Cumple
Cimentación	-0.20/0.00	30x30	Pie	G, V	56.5	13.4	5.7	3.2	-6.9	N.P.	N.P.	1.6	20.7	20.7	Cumple

Apéndice nº 5.- Dimensionamiento ELU de las vigas

ÍNDICE

1 '	VIGAS	2
	1.1 Forjado 1	2
	1.2 Forjado 2	4

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

1.- VIGAS

1.1.- Forjado 1

\/iaaa			COMPR	OBACIONE	ES DE RE	ESISTEN	CIA (INS	TRUCC	IÓN DE	HORMI	GÓN ES	STRUCTU	JRAL EH	IE-08)			Fotodo
Vigas	Disp.	Arm.	Q	N,M	T _c	T_{st}	T _{st}	TNM _x	TNM _y	TV _x	TV _y	$TV_x s_t$	$TV_{Y}S_{t}$	T,Geom.	T,Disp.sı	T,Disp.st	Estado
P2 - P3	Cumple	Cumple	'4.542 m' η = 44.0	'4.800 m' η = 52.1	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 52.1						
P3 - P4	Cumple	Cumple	'0.258 m' η = 35.4	'P3' η = 46.2	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 46.2						
P2 - P6	Cumple	Cumple	'3.691 m' η = 69.6	'P2' η = 57.7	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 69.6						
P6 - P10	Cumple	Cumple	'0.258 m' η = 68.5	'3.951 m' η = 57.5	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 68.5						
P3 - P7	Cumple	Cumple	'3.692 m' η = 69.9	'3.950 m' η = 91.2	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 91.2						
P7 - P11	Cumple	Cumple	'0.258 m' η = 67.9	'P7' η = 91.1	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 91.1						
P4 - P8	Cumple	Cumple	'3.692 m' η = 39.1	'1.345 m' η = 44.6	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 44.6						
P8 - P12	Cumple	Cumple	'0.258 m' η = 38.6	'2.345 m' η = 44.5	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 44.5						
P10 - P11	Cumple	Cumple	'4.542 m' η = 43.3	'P11' η = 59.0	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 59.0						
P11 - P12	Cumple	Cumple	'0.258 m' η = 34.8	'P11' η = 52.2	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 52.2						

Notación:

Disp: Disposiciones relativas a las armaduras
Arm: Armadura minima y máxima

Q: Estado limite de agotamiento frente a cortante (combinaciones no sismicas)
N.M: Estado limite de agotamiento frente a solicitaciones normales (combinaciones no sismicas)
T_a: Estado limite de agotamiento por torsión. Compresión oblicua.
T_a: Estado limite de agotamiento por torsión. Tracción en la lama.
T_a: Estado limite de agotamiento por torsión. Tracción en las armaduras longitudinales.
TIMI, Estado limite de agotamiento por torsión. Interacción entre torsión y esfuerzos normales. Flexión alrededor del eje X.
TIMI, Estado limite de agotamiento por torsión. Interacción entre torsión y esfuerzos normales. Flexión alrededor del eje Y.
Ty: Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje X. Compresión oblicua
Ty: Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje X. Compresión oblicua
Ty: Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje X. Tracción en el alma.
T. Geom: Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje Y. Tracción en el alma.
T. Geom: Estado limite de agotamiento por torsión. Relación entre torsión y cortante en el eje Y. Tracción en el alma.
T. Disp.; Estado limite de agotamiento por torsión. Relación entre las dimensiones de la sección.
T. Disp.; Estado limite de agotamiento por torsión. Separación entre las barras de la armadura transversal.

x: Distancia al origen de la barra
h: Coeficiente de aprovechamiento (%)
N.P: No procede

Comprobación del estado limite de agotamiento por torsión relación entre las barras de la parmadura transversal.

Comprobaciones que no proceden (N.P.):

⁽¹⁾ La comprobación del estado limite de agotamiento por torsión no procede, ya que no hay momento torsor.

⁽²⁾ La comprobación no procede, ya que no hay interacción entre torsión y esfuerzos normales.

Misson	COMPROB	ACIONES DE F	ISURACIÓN (I	NSTRUCCIÓN [DE HORMIGÓ	N ESTRUCTURA	L EHE-08)	Fatada
Vigas	$\sigma_{\scriptscriptstyle c}$	$W_{k,C,sup.}$	W _{k,C,Lat.Der.}	$W_{k,C,inf.}$	W _{k,C,Lat.lzq.}	σ_{sr}	V_{fis}	Estado
P2 - P3	x: 4.8 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE
P3 - P4	x: 0 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE
P2 - P6	x: 3.949 m Cumple	x: 3.949 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	x: 3.949 m Cumple	Cumple	CUMPLE
P6 - P10	x: 0 m Cumple	x: 0 m Cumple	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	x: 0 m Cumple	Cumple	CUMPLE
P3 - P7	x: 3.95 m Cumple	x: 3.95 m Cumple	x: 3.95 m Cumple	x: 1.345 m Cumple	x: 3.95 m Cumple	x: 3.692 m Cumple	Cumple	CUMPLE
P7 - P11	x: 0 m Cumple	x: 0 m Cumple	x: 0 m Cumple	x: 2.695 m Cumple	x: 0 m Cumple	x: 0.298 m Cumple	Cumple	CUMPLE
P4 - P8	x: 3.95 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE
P8 - P12	x: 0 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE
P10 - P11	x: 4.8 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE
P11 - P12	x: 0 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

Vigas	COMPROB	ACIONES DE F	ISURACIÓN (I	nstrucción e	DE HORMIGÓ	n estructura	L EHE-08)	Fatodo
viyas	σ_{c}	W _{k C sup}	W _{k C Lat Der}	W _{k C inf}	W _{k.C.Lat.Izg}	σ.,	V _{fis}	Estado

Notación:

ación:
s_c: Fisuración por compresión
W_{K,C,Map}: Fisuración por tracción: Cara superior
W_{K,C,Map}: Fisuración por tracción: Cara lateral derecha
W_{K,C,Ma}: Fisuración por tracción: Cara inferior
W_{K,C,Mal}: Fisuración por tracción: Cara lateral izquierda
s_d: Área mínima de armadura
V_B: Fisuración por cortante
x: Distancia al origen de la barra
h: Coeficiente de aprovechamiento (%)
N,P: No procede

N.P.: No procede

Comprobaciones que no proceden (N.P.):

⁽¹⁾ La comprobación no procede, ya que la tensión de tracción máxima en el hormigón no supera la resistencia a tracción del mismo.

⁽²⁾ La comprobación no procede, ya que no hay ninguna armadura traccionada.

	Comprobaciones de flecha							
Vigas	Sobrecarga (Característica) $f_{I,Q} \le f_{I,Q,lim}$ $f_{I,Q,lim} = L/350$	A plazo infinito (Cuasipermanente) $f_{\text{T,max}} \leq f_{\text{T,lim}} \\ f_{\text{T,lim}} = L/300$	Activa (Característica) $f_{A,max} \le f_{A,lim}$ $f_{A,lim} = L/400$	Estado				
P2 - P3	f _{I,Q} : 0.05 mm f _{I,Q,lim} : 13.71 mm	f _{T,max} : 2.04 mm f _{T,lim} : 16.00 mm	f _{A,max} : 1.74 mm f _{A,lim} : 12.00 mm	CUMPLE				
P3 - P4	f _{i,Q} : 0.00 mm f _{i,Q,lim} : 9.29 mm	f _{T,max} : 0.43 mm f _{T,lim} : 9.58 mm	f _{A,max} : 0.36 mm f _{A,lim} : 7.05 mm	CUMPLE				
P2 - P6	f _{i,Q} : 0.12 mm f _{i,Q,lim} : 11.28 mm	f _{T,max} : 1.67 mm f _{T,lim} : 13.16 mm	f _{A,max} : 1.43 mm f _{A,lim} : 9.87 mm	CUMPLE				
P6 - P10	f _{i,Q} : 0.12 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.70 mm f _{T,lim} : 13.17 mm	f _{A,max} : 1.46 mm f _{A,lim} : 9.88 mm	CUMPLE				
P3 - P7	f _{i,Q} : 0.15 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.11 mm f _{T,lim} : 13.17 mm	f _{A,max} : 0.95 mm f _{A,lim} : 9.88 mm	CUMPLE				
P7 - P11	f _{i,Q} : 0.15 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.20 mm f _{T,lim} : 13.17 mm	f _{A,max} : 1.05 mm f _{A,lim} : 9.88 mm	CUMPLE				
P4 - P8	f _{i,Q} : 0.04 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.09 mm f _{T,lim} : 13.17 mm	f _{A,max} : 0.84 mm f _{A,lim} : 9.88 mm	CUMPLE				
P8 - P12	f _{i,Q} : 0.04 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.09 mm f _{T,lim} : 13.17 mm	f _{A,max} : 0.84 mm f _{A,lim} : 9.88 mm	CUMPLE				
P10 - P11	f _{i,Q} : 0.05 mm f _{i,Q,lim} : 13.71 mm	f _{T,max} : 2.04 mm f _{T,lim} : 16.00 mm	f _{A,max} : 1.75 mm f _{A,lim} : 12.00 mm	CUMPLE				
P11 - P12	f _{i,Q} : 0.00 mm f _{i,Q,lim} : 9.29 mm	f _{T,max} : 0.43 mm f _{T,lim} : 9.57 mm	f _{A,max} : 0.36 mm f _{A,lim} : 7.04 mm	CUMPLE				

EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

Fecha: 04/07/16

1.2.- Forjado 2

Maga		COMPROBACIONES DE RESISTENCIA (INSTRUCCIÓN DE HORMIGÓN ESTRUCTURAL EHE-08)									Estado						
Vigas	Disp.	Arm.	Q	N,M	T _c	T _{st}	T _{st}	TNM _x	TNM _y	TV_{x}	TV _y	TV_xs_t	$TV_{Y}S_{t}$	T,Geom.	T,Disp.s	T,Disp.st	ESIAGO
P1 - P2	Cumple	Cumple	'0.308 m' η = 59.9	'1.929 m' η = 73.7	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 73.7						
P1 - P5	Cumple	Cumple	'3.642 m' η = 70.3	'1.695 m' η = 75.6	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 75.6						
P5 - P9	Cumple	Cumple	'0.308 m' η = 68.6	'1.995 m' η = 78.1	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 78.1						
P2 - P6	Cumple	Cumple	'3.641 m' η = 61.0	'2.045 m' η = 62.0	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 62.0						
P6 - P10	Cumple	Cumple	'0.308 m' η = 59.3	'1.996 m' η = 63.0	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 63.0						
P9 - P10	Cumple	Cumple	'4.192 m' η = 39.2	'1.929 m' η = 37.6	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽¹⁾	CUMPLE h = 39.2						

Notación

Disp.: Disposiciones relativas a las armaduras Arm.: Armadura mínima y máxima

Arm.: Armadura minima y máxima

C. Estado limite de agotamiento frente a cortante (combinaciones no sismicas)

N.M: Estado limite de agotamiento frente a solicitaciones normales (combinaciones no sismicas)

T_c: Estado limite de agotamiento por torsión. Compresión oblicua.

T_c: Estado limite de agotamiento por torsión. Tracción en el alma.

T_c: Estado limite de agotamiento por torsión. Tracción en las armaduras longitudinales.

NMc: Estado limite de agotamiento por torsión. Interacción entre torsión y esfuerzos normales. Flexión alrededor del eje X. NMc; Estado limite de agotamiento por torsión. Interacción entre torsión y esfuerzos normales. Flexión alrededor del eje Y. TV; Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje Y. Compresión oblicua V_X: Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje Y. Tracción en el alma.

TV_S: Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje Y. Tracción en el alma.

T, Estado limite de agotamiento por torsión. Interacción entre torsión y cortante en el eje Y. Tracción en el alma.

T, Estado limite de agotamiento por torsión. Interacción entre las dimensiones de la sección.

T, Disp., Estado limite de agotamiento por torsión. Separación entre las barras de la armadura transversal.

z. Distancia al origen de la barra

h: Coefficiente de agoto-chamiento (%)

h: Coeficiente de aprovechamiento (%) N.P.: No procede

Comprobaciones que no proceden (N.P.):

¹⁰ La comprobación del estado limite de agotamiento por torsión no procede, ya que no hay momento torsor.

²⁰ La comprobación no procede, ya que no hay interacción entre torsión y esfuerzos normales.

Miggs	COMPROBA	COMPROBACIONES DE FISURACIÓN (INSTRUCCIÓN DE HORMIGÓN ESTRUCTURAL EHE-08)							
Vigas	$\sigma_{\rm c}$	W _{k,C,sup.}	W _{k,C,Lat.Der.}	$W_{k,C,inf.}$	W _{k,C,Lat.lzq.}	σ_{sr}	V_{fis}	Estado	
P1 - P2	x: 2.25 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE	
P1 - P5	x: 3.95 m Cumple	x: 3.95 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	x: 3.95 m Cumple	Cumple	CUMPLE	
P5 - P9	x: 0 m Cumple	x: 0 m Cumple	N.P. ⁽²⁾	N.P. ⁽²⁾	N.P. ⁽²⁾	x: 0 m Cumple	Cumple	CUMPLE	
P2 - P6	x: 3.949 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	x: 0 m Cumple	CUMPLE	
P6 - P10	x: 0 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE	
P9 - P10	x: 2.25 m Cumple	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	N.P. ⁽¹⁾	Cumple	CUMPLE	

s.: Fisuración por compresión

W_{k,C,sup.}: Fisuración por tracción: Cara superior

 $W_{\text{\tiny KC,lat.Dec.}}$: Fisuración por tracción: Cara lateral derecha $W_{\text{\tiny KC,lat.}}$: Fisuración por tracción: Cara inferior

W_{k,C,Lat.lzq}.: Fisuración por tracción: Cara lateral izquierda s...: Área mínima de armadura

V_{fis}: Fisuración por cortante

x: Distancia al origen de la barra h: Coeficiente de aprovechamiento (%)

N.P.: No procede

Comprobaciones que no proceden (N.P.):

⁽ⁱ⁾ La comprobación no procede, ya que la tensión de tracción máxima en el hormigón no supera la resistencia a tracción del mismo.

⁽²⁾ La comprobación no procede, ya que no hay ninguna armadura traccionada.

	Comprobaciones de flecha							
Vigas	Sobrecarga (Característica) $f_{I,Q} \le f_{I,Q,lim}$ $f_{I,Q,lim} = L/350$	A plazo infinito (Cuasipermanente) $f_{\text{T,max}} \leq f_{\text{T,lim}} \\ f_{\text{T,lim}} = L/300$	Activa (Característica) $f_{A,max} \le f_{A,lim}$ $f_{A,lim} = L/400$	Estado				
P1 - P2	f _{i,Q} : 2.21 mm f _{i,Q,lim} : 12.86 mm	f _{T,max} : 3.84 mm f _{T,lim} : 15.00 mm	f _{A,max} : 5.23 mm f _{A,lim} : 11.25 mm	CUMPLE				
P1 - P5	f _{i,Q} : 0.31 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.58 mm f _{T,lim} : 13.17 mm	f _{A,max} : 1.57 mm f _{A,lim} : 9.88 mm	CUMPLE				

PALTEC EDAR VALDEMAQUEDA. EDIFICIO DE CONTROL

	Comprobaciones de flecha							
Vigas	Sobrecarga (Característica) $f_{i,O} \le f_{i,O,lim}$ $f_{i,O,lim} = L/350$	A plazo infinito (Cuasipermanente) $f_{\text{I,max}} \leq f_{\text{I,lim}} \\ f_{\text{I,lim}} = L/300$	Activa (Característica) $f_{A,max} \le f_{A,lim}$ $f_{A,lim} = L/400$	Estado				
P5 - P9	f _{i,Q} : 0.34 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.62 mm f _{T,lim} : 13.17 mm	f _{A,max} : 1.61 mm f _{A,lim} : 9.88 mm	CUMPLE				
P2 - P6	f _{i,Q} : 0.19 mm f _{i,Q,lim} : 11.28 mm	f _{T,max} : 1.05 mm f _{T,lim} : 13.16 mm	f _{A,max} : 0.95 mm f _{A,lim} : 9.87 mm	CUMPLE				
P6 - P10	f _{i,Q} : 0.19 mm f _{i,Q,lim} : 11.29 mm	f _{T,max} : 1.06 mm f _{T,lim} : 13.17 mm	f _{A,max} : 0.97 mm f _{A,lim} : 9.88 mm	CUMPLE				
P9 - P10	f _{i,Q} : 0.08 mm	f _{I,max} : 2.24 mm f _{I,lm} : 15.00 mm	f _{A,max} : 1.83 mm f _{A lim} : 11.25 mm	CUMPLE				

ANEJO Nº 6.- MEDIA TENSIÓN Y CENTRO DE TRANSFORMACIÓN

ANEJO Nº 6.- MEDIA TENSIÓN Y CENTRO DE TRANSFORMACIÓN

Índice de documentos

DOCUMENTO Nº 1.- MEMORIA

DOCUMENTO Nº 2.- PLANOS

DOCUMENTO Nº 3.- PLIEGO DE PRESCRIPCIONES TÉCNICAS

DOCUMENTO Nº 4.- PRESUPUESTO

DOCUMENTO Nº 1 MEMORIA

ANEJO Nº 6.- MEDIA TENSIÓN Y CENTRO DE TRANSFORMACIÓN

INDICE

1	OBJE	го	1					
2	SITUA	CIÓN ACT	UAL1					
	2.1	SISTEMA	A DE ABASTECIMIENTO ELÉCTRICO1					
	2.2	SISTEMA DE DISTRIBUCIÓN ELÉCTRICA4						
	2.3	ACTUAC	IONES A REALIZAR4					
3	DEMA	NDA DE PO	OTENCIA6					
	3.1	DEMAND	DA DE POTENCIA ACTUAL: EQUIPOS EXISTENTES6					
	3.2	DEMAND	DA DE POTENCIA FUTURA Y DIMENSIONAMIENTO DEL C.T7					
4	LÍNEA	LÍNEAS DE MEDIA TENSIÓN 9						
	4.1	ACOMET	TDA9					
		4.1.1	CALCULO DE ACOMETIDA CONEXIÓN EN AT10					
5	CÁLC	JLOS DE II	NTENSIDADES Y CORTOCIRCUITOS10					
	5.1	INTENSII	DAD DE ALTA TENSIÓN10					
	5.2	INTENSII	DAD EN BAJA TENSIÓN11					
	5.3	CORTOC	:IRCUITOS12					
		5.3.1	OBSERVACIONES12					
	5.4	CORTOC	RCUITO EN EL LADO DE ALTA TENSIÓN13					
	5.5	CORTOC	CORTOCIRCUITO EN EL LADO DE BAJA TENSIÓN13					
	5.6	DIMENSI	ONADO DEL EMBARRADO14					
		5.6.1	COMPROBACIÓN POR DENSIDAD DE CORRIENTE14					
		5.6.2	COMPROBACIÓN POR SOLICITACIÓN ELECTRODINÁMICA14					
		5.6.3	COMPROBACIÓN POR SOLICITACIÓN TÉRMICA14					
6	SELEC	CCIÓN DE I	LAS PROTECCIONES DE ALTA Y BAJA TENSIÓN15					
	6.1	ALTA TE	NSIÓN15					
		6.1.1	AJUSTE DEL DISPOSITIVO TÉRMICO O DE LOS RELÉS17					
	6.2	BAJA TE	NSIÓN					
7	ESTU	DIO DE CO	ORDINACIÓN DE PROTECCIONES18					
	7.1	COORDII	NACIÓN DE PROTECCIONES EDAR / SISTEMA ELÉCTRICO18					
	7.2	7.2 DISEÑO DE PARÁMETROS19						
8	DIMEN	ISIONADO	DE LA VENTILACIÓN DEL CENTRO DE TRANSFORMACIÓN. 22					
9	DIMEN	ISIONES D	EL POZO APAGAFUEGOS22					
10			S INSTALACIONES DE PUESTA A TIERRA ASOCIADAS AL INSFORMACIÓN23					
	10.1	INVESTI	GACIÓN DE LAS CARACTERÍSTICAS DEL SUELO23					
	10.2		INACIÓN DE LAS CORRIENTES MÁXIMAS DE PUESTA A TIERRA Y MPO MÁXIMO CORRESPONDIENTE A LA ELIMINACIÓN DEL DEFECTO:	23				

	10.3	DISEÑO	PRELIMINAR DE LA INSTALACIÓN DE TIERRA	24
		10.3.1	TIERRA DE PROTECCIÓN	24
		10.3.2	TIERRA DE SERVICIO	25
		10.3.3	CÁLCULO DE LA RESISTENCIA DEL SISTEMA DE TIERRAS	26
		10.3.4	CÁLCULO DE LAS TENSIONES EN EL EXTERIOR DE LA INSTALACIÓN	28
		10.3.5	CÁLCULO DE LAS TENSIONES EN EL INTERIOR DE LA INSTALACIÓN	28
		10.3.6	CÁLCULO DE LAS TENSIONES APLICADAS	29
		10.3.7	INVESTIGACIÓN DE TENSIONES TRANSFERIBLES AL EXTERIO	R. 30
		10.3.8	CORRECCIÓN Y AJUSTE DEL DISEÑO INICIAL ESTABLECIENDO DEFINITIVO.	_
11	CÁLCU	LO DE C	ONDUCTORES	31
	11.1	CÁLCUI	O POR DENSIDAD DE CORRIENTE	31
	11.2	CÁLCUI	_O POR CAÍDA DE TENSIÓN	31
	11.3	INTENS	IDAD ADMISIBLE	33
	11.4	CONDU	CTORES A EMPLEAR	33
	11.5	REDES	SUBTERRANEAS PARA DISTRIBUCIÓN EN BAJA TENSIÓN	35
		11.5.1	DIRECTAMENTE ENTERRADOS	35
		11.5.2	EN CANALIZACIONES ENTUBADAS	35
		11.5.3	GALERÍAS O ZANJAS REGISTRABLES	36
		11.5.4	EN BANDEJAS, SOPORTES, PALOMILLAS O DIRECTAMENTE SUJETOS A LA PARED	36
		11.5.5	CIRCUITOS CON CABLES EN PARALELO	37
	11.6	INSTAL	ACIONES RECEPTORAS	37
		11 6 1	SECCIÓN Y TIPOLOGÍA DE CABLES LITILIZADOS	37

1.-OBJETO

El objeto del presento anejo, inicialmente era definir las actuaciones para realizar las obras de conexión a la red de M.T. mediante línea subterránea (mixta compañía-privada), centro de seccionamiento y centro de transformación privado Canal Gestión para dotar de energía en MT a la EDAR de Valdemaqueda de forma individual.

Por petición expresa del Ayto. del Valdemaqueda, y con la finalidad de dar servicio eléctrico a terceros clientes interesados, se ha llegado a un acuerdo junto a Iberdrola y Canal Isabel II Gestión SA, por el que se abre un nuevo expediente de condiciones de suministro con la compañía eléctrica.

Con esta nueva casuística, la línea de media tensión llegará hasta una parcela cercana a la EDAR donde se instalará un Centro de Transformación (CT). Tanto la línea en media tensión hasta ese punto y el CT serán propiedad de la compañía eléctrica. Desde el centro de transformación lberdrola distribuirá en baja tensión tanto a la EDAR como al resto de clientes interesados de las parcelas cercanas.

Por tanto, el objeto del presente anejo es definir las instalaciones para realizar las obras de conexión a la red de MT con la línea eléctrica subterránea y el centro de transformación indicados.

En cuanto a las calidades y criterios de diseño no indicados en el presente documento se deberán consultar los documentos Pliego de Bases Generales y especificaciones técnicas relacionadas.

2.-SITUACIÓN ACTUAL

2.1 SISTEMA DE ABASTECIMIENTO ELÉCTRICO

La estación depuradora se encuentra actualmente aislada de la red eléctrica, y se alimenta eléctricamente a través de un conjunto de 314 módulos fotovoltaicos, distribuidos a lo largo de 4 grupos sobre una estructura metálica fija:

- 1º Grupo → 116 unidades fotovoltaicas.
- 2º Grupo → 96 unidades fotovoltaicas.
- 3º Grupo → 84 unidades fotovoltaicas.

4º Grupo → 18 unidades fotovoltaicas.

Debido a la poca potencia requerida por los motores del proceso de tratamiento actual, el sistema de energía solar es suficiente para su alimentación.

La energía obtenida en las placas solares pasa por un proceso de filtrado y corrección mediante un módulo cc-cc montado en un cuadro eléctrico, que se ubica en la cámara existente bajo el tratamiento biológico (biodiscos). Una vez filtrada y estabilizada, la energía se almacena en 144 elementos (baterías) de 2V, 1850Ah/100h de tecnología plomo-acido, fabricados por BP Solar, que se distribuyen en tres bancadas de cuatro filas y 12 elementos por fila.

Las baterías están conectadas de forma que la tensión de continua es de 48 voltios.

Conectado a la salida de las bancadas, encontramos el inversor CC-CA situado contiguo a las baterías, de la marca Logibai S.A.

Una vez que la electricidad está transformada de 48 C.C. a 380 C.A. se procede a su distribución a los motores de la EDAR.

En el supuesto caso de que las baterías estuvieran descargadas o inutilizadas por algún problema técnico, se dispone de un cuadro de conmutación automático para posibilitar la entrada de una fuente de alimentación auxiliar, en el caso dado, de un grupo electrógeno existente en la parcela de 11kVA y así no interrumpir el proceso de depuración.

Todo el control del sistema de carga y descarga de baterías, medida de voltajes y niveles de carga, además de la posible señal de arranque y conmutación del grupo electrógeno, es controlado por un PLC situado en la misma sala, en un cuadro eléctrico situado en la pared.

2.2 SISTEMA DE DISTRIBUCIÓN ELÉCTRICA

La distribución eléctrica de la planta se realiza desde el Cuadro de Distribución, situado en el pequeño edificio ubicado a la derecha del acceso a la parcela. Éste cuadro está conectado a la salida del cuadro de conmutación citado anteriormente, por lo que siempre se encuentra alimentado, independientemente sea de la fuente solar o del grupo electrógeno. En su interior se encuentra la aparamenta de protección y control de motores, desde donde arrancan todas las líneas de alimentación a éstos y a los cuadros locales distribuidos por la planta.

El sistema de control de todo el proceso se realiza comandado por un PLC instalado en un cuadro exclusivo junto al Cuadro de Distribución, en la misma sala.

2.3 ACTUACIONES A REALIZAR

Como punto principal del proyecto, se procede a sustituir el actual sistema de alimentación eléctrica de la EDAR mediante placas solares, por una conexión con la red eléctrica en BT a través de un nuevo CT conectado a la red de media tensión mediante línea subterránea.

En el primer momento de la redacción del presente proyecto se tuvo respuesta de Carta de Condiciones técnico económicas de Suministro por parte de la distribuidora eléctrica IBERDROLA, obteniéndose una ubicación para el punto de entronque con su RSMT, generándose el expediente número 9032024571, con fecha de apertura 29/07/2015. Se abonó a la compañía distribuidora la cantidad de 3.194,85 + IVA, en concepto de derechos de supervisión de instalaciones cedidas y trabajos en la red subterránea de media tensión, aunque dicho importe va a ser devuelto a Canal Gestión por la nulidad del expediente. Tras el nuevo escenario surgido, dicho expediente pasa a ser actualizado por otro.

A partir del acuerdo llegado con el Ayto. de Valdemaqueda, cambia el planteamiento inicial de acometida eléctrica, por lo que se tiene una nueva carta de condiciones de suministro de Iberdrola manteniendo la ubicación para el entronque con su RSMT, generándose un nuevo expediente número 9033241437, con fecha de apertura 24/05/2016. Canal Gestión está en vías de abonar la cantidad de 1.187,16€+IVA como aceptación de las nuevas condiciones de suministro, por lo que desde el momento en el que el pago se haga efectivo se asegurará la reserva de potencia solicitada.

El punto de entronque se integra en pleno núcleo urbano, y se debe realizar una extensión de la línea de distribución subterránea de Media Tensión mediante circuitos de entrada-salida (doble circuito). El conductor a emplear debe ser HEPRZ1 Al 3x240mm².

Como punto frontera entre compañía y abonado, se instalará un nuevo centro de transformación a las afueras de la parcela de la EDAR, que dista aproximadamente 1200m del punto de conexión. Dicho centro es propiedad exclusiva de Iberdrola (compañía). Este centro se instalará en un edificio de hormigón prefabricado.

Los elementos que componen el CT son:

- Unidad compacta RM6 con dos posiciones de línea motorizadas más una de protección (2L+P), con resistencia al arco interno 16kA 0.5seg, y con cajón de automatización Iberdrola (STAR), con las siguientes funciones:
 - Cabina de entrada con Interruptor Seccionador de línea en SF6.
 - Cabina de salida con Interruptor Seccionador de línea en SF6.
 - Cabina con Interruptor Seccionador pasante en SF6.
- Cabina de remonte con sistema de puesta a tierra.
- Cabina de protección general mediante ruptofusible, con interruptor seccionador en SF6 con bobina de apertura mando motorizado, señalización de fusión, indicadores de presencia y enclavamientos.
- 1 ud. transformador de potencia 400kVA en baño de aceite mineral ONAN, con relación de transformación 20/0.42kV. Protección mediante termómetro.
- Cuadro de distribución en baja tensión con seccionador vertical 3P+N, con 5 salidas.
- Fuente de alimentación asegurada.

Dispondrá de concentradores de datos de medida necesarios, un equipo de comunicaciones, antena para comunicaciones 3G y fuente de alimentación asegurada para dar servicio al mando motorizado así como los diversos relés de protección.

Desde el CT Iberdrola se alimentará el nuevo Cuadro General de Baja Tensión, que se ubicará en la sala eléctrica en el edificio de control, cuadros y soplantes de obra civil en la parcela de la EDAR, junto al tratamiento biológico.

El circuito a emplear para la red de distribución (75m) que acaba en la caja general de protección y medida está compuesto por conductor XZ1(S) Al 0,6/1 kV 3x(1x240)+1x150mm² y la derivación individual hasta el CGBT de 100m, estará compuesta por tres conductores unipolares RZ1-k Cu 0,6/1kV 3x(1x150)mm², además se incluirá como neutro otra unidad más de RZ1-k Cu 1x150mm².

La nueva sala eléctrica está destinada exclusivamente a albergar el Cuadro General de Baja Tensión, el armario de PLC, batería automática y el Cuadro General del Alumbrado y Servicios.

Se prevé la sustitución de cableados y canalizaciones desde el CGBT a los motores, y la renovación del PLC de control existente en la planta.

3.-DEMANDA DE POTENCIA

El caudal de tratamiento de la EDAR para la fase de actuaciones eléctricas que ocupa el presente proyecto, es el mismo que actualmente trata la planta. No obstante, a la hora de dimensionar las instalaciones eléctricas, se deberá considerar una reserva de espacio y una capacidad en los equipos eléctricos principales para la ampliación de las nuevas instalaciones y procesos que permita tratar 800 m³/d en vista a la futura ampliación de la EDAR.

Se entienden como equipos eléctricos principales los relacionados con Media Tensión, Centro de Transformación y Cuadro General de Baja Tensión afectados.

3.1 DEMANDA DE POTENCIA ACTUAL: EQUIPOS EXISTENTES

La relación de equipos a alimentar es la siguiente.

En la columna "Estado de Instalación" se diferencian las cargas ya existentes de algunas de nueva instalación relacionadas con instalaciones del nuevo edificio:

Nº DEL CIRCUITO	DESIGNACIÓN	EQUIPOS INSTALADOS	EQUIPOS EN FUNCIONAM.	POTENCIA UNITARIA	POTENCIA INSTALADA	POTENCIA SIMULTANEA	ESTADO INSTAL. ACTUADOR
		Ud	Ud	kW	kW	kW	
	CUADRO MOTORES EDAR VALDEMAQUEDA	24,00	21,00		37,42	30,73	
A1	Prensa hidráulica	1	1	1,75	1,75	1,75	Existente
A2	Tamiz de finos 3mm	1	1	0,30	0,30	0,30	Existente
A3	Reja de gruesos	1	1	0,90	0,90	0,90	Existente
A4	Biocilindro (VF)	2	2	2,20	4,40	4,40	Existente
A5	Bomba sumergible fangos primarios	2	2	1,10	2,20	2,20	Existente
A6	Bomba sumergible fangos biológicos (VF)	2	2	1,10	2,20	2,20	Existente
A7	Bomba tornillo helicoidal fangos primarios (VF)	2	1	0,37	0,74	0,37	Existente
A8	Bomba tornillo helicoidal fangos secundarios (VF)	2	1	0,37	0,74	0,37	Existente
A9	Bombeo de vaciados y drenajes	2	1	2,20	4,40	2,20	Existente
A10	Actuador válvula motorizada tajadera espesador	1	1	0,02	0,02	0,02	Existente
A11	Varios	1	1	5,00	5,00	5,00	Existente
A12	Cuadro general de alumbr. y servicios				10,27	6,52	Nuevo
A13	Control	2	2	1,00	2,00	2,00	Nuevo
A14	Ventilador extractor ed.eléctrico	5	5	0,50	2,50	2,50	Nueno

Además el CGBT dispondrá de una salida para un cuadro auxiliar de alumbrado y servicios:

DESIGNACIÓN	POTENCIA UNITARIA	UNIDADES	POTENCIA INSTALADA	POTENCIA SIMULTANEA
	Ud	Ud	Kw	Kw
EDAR VALDEMAQUEDA				
CUADRO GENERAL ALUMBRADO Y SERVICIOS			10,27	6,52
Alumbrado exterior - Farolas 250 W VSAP	0,25	5,00	1,25	1,25
Alumbrado exterior - Brazo mural 150W VSAP	0,15	6,00	0,90	0,90
Alumbrado interior ed. control Fluorescente 2x36W	0,07	19,00	1,37	1,37
Alumbrado interior ed. control Fluorescente 4x14W	0,06	2,00	0,11	0,11
Alumbrado interior ed. control Incandescentes 70W	0,07	2,00	0,14	0,14
Tomas fuerza ed. control	5,00	1,00	5,00	1,25
Salida a cuadro local biológico	1,50	1,00	1,50	1,50

Como se puede observar, la potencia instalada es de 37,42kW y la simultánea demandada será de **30,73kW**.

En el documento de planos eléctricos se han incluido los esquemas unifilares de este cuadro, con indicación de la intensidad nominal y el tipo de arranque.

3.2 DEMANDA DE POTENCIA FUTURA Y DIMENSIONAMIENTO DEL C.T.

El siguiente cuadro muestra una previsión de las futuras cargas a instalar en la EDAR, que se sumarán a las ya existentes.

Nº DEL CIRCUITO	DESIGNACIÓN	EQUIPOS INSTALADOS	EQUIPOS EN FUNCIONAM.	POTENCIA UNITARIA	POTENCIA INSTALADA	POTENCIA SIMULTANEA
		Ud	Ud	Kw	Kw	Kw
	CUADRO MOTORES FUTURO EDAR VALDEMAQUED	46,00	36,00		162,22	123,21
A1	Cuchara bivalva con polipasto	1	1	4,00	4,00	4,00
A2	Tamiz autolimpiante	2	2	0,75	1,50	1,50
A3	Tornillo transportador compactador	1	1	1,50	1,50	1,50
A4	Puente desarenador (carro con bomba arenas)	1	1	2,50	2,50	2,50
A5	Soplantes desemulsionado	2	1	4,00	8,00	4,00
A6	Electroválvula extracción natas	1	1	0,02	0,02	0,02
A7	Clasificador-lavador de arenas	1	1	0,75	0,75	0,75
A8	Concentrador de natas	1	1	0,25	0,25	0,25
A9	Bombeo de vaciados	2	1	3,00	6,00	3,00
A10	Decantador de excesos	1	1	0,75	0,75	0,75
A11	Bombeo purga de fango	2	1	1,30	2,60	1,30
A12	Bombeo flotantes	2	1	1,30	2,60	1,30
A13	Válvula PIC	1	1	0,05	0,05	0,05
A14	Agitador reactor biológico	2	2	2,90	5,80	5,80
A15	Soplantes biológico	3	2	15,00	45,00	30,00
A16	Decantador secundario	2	2	0,75	1,50	1,50
A17	Bombeo flotantes	2	1	1,30	2,60	1,30
A18	Bombeo fangos recirculación	3	2	1,30	3,90	2,60
A19	Bombeo fangos en exceso	2	2	1,30	2,60	2,60
A20	Espesador de fangos	1	1	0,37	0,37	0,37
A21	Bombeo fangos espesados a depósito	2	1	0,75	1,50	0,75
A22	Bomba vaciado depósito fangos	2	1	4,00	8,00	4,00
A23	Agitador depósito fangos	1	1	2,20	2,20	2,20
A24	Bomba dosificadora FeCl3	3	2	0,37	1,11	0,74
A25	Bomba carga FeCl3	1	1	1,50	1,50	1,50
A26	Equipo presión agua servicios	1	1	3,00	3,00	3,00
A27	Compresor aire de servicios	1	1	2,00	2,00	2,00
A28	Polipasto sala soplantes	1	1	2,20	2,20	2,20
A29	Varios (alumbrado, fuerza, control)	1	1	10,00	10,00	10,00
A30	Equipos planta actual				38,42	31,73

Se considera que el futuro pretratamiento sustituirá al actual, por lo que en el siguiente sumatorio de *potencia total futuro* se restan las cargas del pretratamiento actual (prensa, tamiz y reja). Se presenta a continuación un cuadro resumen con los receptores a considerar y futuros:

TOTALES

Nº DE RECEPTORES PROYECTO ACTUAL	24	Ud.
Nº DE RECEPTORES PROYECTO FUTURO EN LA EDAR	70	Ud.
POTENCIA INSTALADA EDAR PROYECTO ACTUAL	37,42	kW
POTENCIA SIMULTANEA EDAR PROYECTO ACTUAL	30,73	kW
POTENCIA INSTALADA TOTAL FUTURO	158,27	kW
POTENCIA SIMULTÁNEA TOTAL FUTURO	119,26	kW

Por tanto, la potencia base a considerar para el cálculo del centro de transformación es la potencia simultánea total a futuro, de **119,26kW**.

Aplicando a este último valor un coeficiente de simultaneidad de 0,8 (debido a que no todos los equipos funcionarán a la vez y a que las potencias indicadas son nominales), considerando un factor de potencia de 0,8 para estar preparados ante un eventual fallo de las baterías de condensadores, y contando con una reserva de potencia del 25% se obtiene lo siguiente:

CALCULO DEL TRANSFORMADOR SEGÚN CRITERIOS PLIEGO

POTENCIA TOTAL INSTALADA (kW)	158,27 kW
CGBT simultánea	119,26 kW
Coeficiente simultaneidad (factor de funcionamiento)	0,80
Potencia en simultáneo	95,41 kW
Reserva 25%	23,85 kW
TOTAL POTENCIA (kW)	119,26 kW
Coseno de Fi (conservador ya que va a existir compensación)	0,80
TOTAL Potencia aparente necesaria (kVA)	150,33 kVA
Potencia Adoptada en CT Iberdrola (kVA)	400kVA

Teniendo en cuenta los antecedentes, la compañía distribuidora Iberdrola ha calculado y decidido que la potencia del transformador a instalar es de 400kVA, contando con al menos en 100kW para el funcionamiento de la EDAR de Valdemagueda.

4.-LÍNEAS DE MEDIA TENSIÓN

4.1 ACOMETIDA

Tal y como se ha comentado en la introducción se procederá a la realización de una línea subterránea de 20 kV de longitud 1200m enteramente de propiedad compañía, hasta el CT. Esta nueva línea deberá realizarse siguiendo los criterios y normas de la compañía suministradora.

En la carta de condiciones de suministro se indica que dicha línea se componga por un doble circuito, con conductores unipolares HEPRZ1 Al 1x240mm² 12/20kV. Este doble circuito se tiende enterrado bajo tubo PEAD corrugado de diámetro 160mm, un circuito por tubo, y dos de reserva, según la sección de zanja tipo definida en Planos.

El diseño de dicha línea se hará según las exigencias de Compañía y el Reglamento de Líneas Eléctricas de Alta Tensión y sus Instrucciones Técnicas Complementarias ITC-LAT 01 a 09 (RD 223/2008).

4.1.1 CALCULO DE ACOMETIDA CONEXIÓN EN AT

Tipo de cable HEPRZ1 12/20 KV Al de 1 x 240 mm²

Intensidad admisible en régimen permanente a 25 °C = 400 A

$$\eta = \frac{\text{intensidad}}{\text{secci on}} = \frac{400 \text{ A}}{240} = 1,66 \text{ A/mm}^2$$

Densidad máxima admisible en c.c. de 0,5 seg.

Según fabricante es de 0,5" = 132 A/mm²

La potencia de cortocircuito de la Compañía para esta línea es de 350 MVA.

Por tanto:

$$Icc = \frac{Pcc}{\sqrt{3} \times U} = \frac{350 \text{ MVA}}{\sqrt{3} \times 20 \text{ KV}} = 10.100 \text{ A}$$

$$S = \frac{10.100A}{132.\text{ A/mm}^2} = 76,51 \text{ mm}^2$$

Por lo que es correcto utilizar la sección elegida de 240 mm².

Además, según las gráficas del fabricante (normas IEC 60949 y UNE 21192), la intensidad térmicamente admisible para un conductor de 240mm² durante 0,5seg. es de 32kA, valor que cumple la Icc calculada.

5.-CÁLCULOS DE INTENSIDADES Y CORTOCIRCUITOS

5.1 INTENSIDAD DE ALTA TENSIÓN

En un sistema trifásico, la intensidad primaria Ip viene determinada por la expresión:

$$Ip = \frac{S}{\sqrt{3} * U}$$

Siendo:

S = Potencia del transformador en kVA.

U = Tensión compuesta primaria en kV = 20 kV.

Ip = Intensidad primaria en Amperios.

Sustituyendo valores, tendremos:

Potencia del transformador (kVA)	Ip (A)
400	11,55

5.2 INTENSIDAD EN BAJA TENSIÓN

En un sistema trifásico la intensidad secundaria Is viene determinada por la expresión:

$$Is = \frac{S - Wfe - Wcu}{\sqrt{3} * U}$$

Siendo:

S = Potencia del transformador en kVA = 400kVA

Wfe= Pérdidas en el hierro = 930W

Wcu= Pérdidas en los arrollamientos = 4600W

U = Tensión compuesta en carga del secundario en kilovoltios = 0.4 kV.

Is = Intensidad secundaria en Amperios.

Sustituyendo valores, tendremos:

Potencia del transformador (kVA)	Is (A)
400	569,37

Por esta razón la intensidad de la protección de baja tensión asociado al transformador será 4P x 630A.

5.3 CORTOCIRCUITOS

5.3.1 OBSERVACIONES

Para el cálculo de las intensidades que origina un cortocircuito, se tendrá en cuenta la potencia de cortocircuito de la red de Media Tensión, valor que debe ser especificado por la Compañía suministradora y que se supone de 350MVA.

5.3.1.1 CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO

Para el cálculo de la corriente de cortocircuito en el lado primario, se utiliza la expresión:

Iccp =
$$\frac{\text{Scc}}{1,732 \text{ x V}_{\text{p}}}$$
 (3.3.2.a)

donde:

Scc = potencia de cortocircuito de la red en MVA

Vp = tensión de servicio en kV (20kV)

Iccp = corriente de cortocircuito en kA

Para los cortocircuitos secundarios, se va a considerar que la potencia de cortocircuito disponible es la teórica de los transformadores de MT-BT, siendo por ello más conservadores que en las consideraciones reales.

La corriente de cortocircuito secundaria de un transformador trifásico, viene dada por la expresión:

Iccs =
$$\frac{S}{1,732 \times Ecc \times V_s}$$
 (3.3.2.b)

donde:

S = potencia del transformador en kVA

Ecc = tensión de cortocircuito del transformador

Vs = tensión secundaria en V

Iccs = corriente de cortocircuito en KA

5.4 CORTOCIRCUITO EN EL LADO DE ALTA TENSIÓN

Utilizando la expresión 3.3.2.a, en la que la potencia de cortocircuito es de 350 MVA para ese nivel de tensión de 20kV, la intensidad de cortocircuito será:

$$Iccp = \frac{Scc}{1,732 \text{ x V}_p} = 10,01 \text{ kA}$$

Las celdas de Media Tensión tienen una capacidad de soporte del cortocircuito de 16kA durante 1 s, lo que supera ampliamente el valor que se puede presentar.

5.5 CORTOCIRCUITO EN EL LADO DE BAJA TENSIÓN

En este punto se analizarán las intensidades de cortocircuito que deberán soportar los diferentes interruptores de acometida al Cuadro General de Baja Tensión de la EDAR, así como la intensidad a soportar por su embarrado.

 Para un transformador de 400 kVA, la tensión porcentual de cortocircuito del 4%, y la tensión secundaria es de 400 V.

La intensidad de cortocircuito en el lado de Baja Tensión con 400 V será, según la fórmula 3.3.2.b:

$$Iccs = \frac{S}{1,732 \text{ x Ecc x V}_s} = 14,43 \text{ kA aportados el transformador}$$

La aparamenta de acometida al CGBT de la EDAR deberá como mínimo soportar el anterior valor de cortocircuito.

La capacidad de cortocircuito del Cuadro General de Baja Tensión nuevo es de 50kA, por lo que se cumple el valor de cortocircuito que aporta el transformador.

En el CGBT de la planta, el paso de alimentación de red a una posible alimentación de grupo será con paso por cero, por lo que al no funcionar en paralelo con la red no hay que tenerlo en cuenta para dimensionar la capacidad de cortocircuito del embarrado.

Los cuadros secundarios asociados a máquinas o cuadros locales de alumbrado y usos se diseñarán para soportar una capacidad de cortocircuito de 16 kA.

La repercusión en el lado de M.T. del cortocircuito en B.T. será despreciable, para demostrarlo realizaremos el cálculo:

$$Icc_r = \frac{V_{BT}}{V_{MT} \times 10^3} \times Icc_{BT} = \frac{400}{20 \times 10^3} \times 14,43 = 0.29 kA$$

Por lo que un cortocircuito en el lado de B.T. no afectará a la instalación de M.T.

5.6 DIMENSIONADO DEL EMBARRADO

Como resultado de los ensayos que se realizarán a las celdas de media tensión no son necesarios los cálculos teóricos ya que con los certificados de ensayo se justifican los valores que se indican tanto en esta memoria como en las placas de características de las celdas.

5.6.1 COMPROBACIÓN POR DENSIDAD DE CORRIENTE

La comprobación por densidad de corriente tiene como objeto verificar que no se supera la máxima densidad de corriente admisible por el elemento conductor cuando por el circule un corriente igual a la corriente nominal máxima.

Para las celdas seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada.

5.6.2 COMPROBACIÓN POR SOLICITACIÓN ELECTRODINÁMICA

La comprobación por solicitación electrodinámica tiene como objeto verificar que los elementos conductores de las celdas incluidas en este proyecto son capaces de soportar el esfuerzo mecánico derivado de un defecto de cortocircuito entre fase.

Para las celdas seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante protocolo de ensayo.

El ensayo garantiza una resistencia electrodinámica de 50kA.

5.6.3 COMPROBACIÓN POR SOLICITACIÓN TÉRMICA

La comprobación por solicitación térmica tiene como objeto comprobar que por motivo de la aparición de un defecto o cortocircuito no se producirá un calentamiento excesivo del elemento conductor principal de las celdas que pudiera así dañarlo.

Para las celdas seleccionadas para este proyecto se ha obtenido la correspondiente certificación que garantiza cumple con la especificación citada mediante protocolo de ensayo.

El ensayo garantiza una resistencia térmica de 16kA 1 segundo.

6.-SELECCIÓN DE LAS PROTECCIONES DE ALTA Y BAJA TENSIÓN

El transformador está protegido tanto en AT como en BT. En Alta Tensión la protección la efectúa la celda asociada a este transformador, mientras que en Baja Tensión, la protección se incorpora mediante un cuadro de protección por fusibles.

6.1 ALTA TENSIÓN

La protección del transformador se realiza mediante ruptofusible.

Los cortacircuitos fusibles son los limitadores de corriente, produciéndose su fusión, para una intensidad determinada, antes que la corriente haya alcanzado su valor máximo. De todas formas, esta protección debe permitir el paso de la punta de corriente producida en la conexión del transformador en vacío, soportar la intensidad en servicio continuo y sobrecargas eventuales y cortar las intensidades de defecto en los bornes del secundario del transformador.

Como regla práctica, simple y comprobada, que tiene en cuenta la conexión en vacío del transformador y evita el envejecimiento del fusible, se puede verificar que la intensidad que hace fundir al fusible en 0,1 segundo es siempre superior o igual a 14 veces la intensidad nominal del transformador.

La intensidad nominal del fusible de alta tensión, depende de la curva de fusión y normalmente está comprendida entre 2 y 3 veces la intensidad nominal del transformador protegido, lo cual en nuestro caso, obtenemos:

$$K = \frac{I_f}{I_n}$$

I_f = Intensidad nominal del fusible

 I_n = Intensidad nominal del transformador en A.T.

K = Valor de la curva. (entre 2 y 3)

El calibre de los fusibles se elegirá según la siguiente tabla que se encuentra en el manual técnico de Iberdrola MT 2.13.40, apartado 3, tabla 2. El criterio de selección se apoya básicamente en la UNE 21-122 "Guía de aplicación para la elección de fusibles de alta tensión destinados a utilizarse en circuitos transformadores". Estos fusibles, como protección del transformador, van ubicados en la celda de protección de cada trafo.

TABLA 2: Fusibles limitadores para centros de transformación particulares

Tensión	Potencia del centro de transformación (kVA)							Tensión		
red kV	160	200	250	315	400	500	630	800	1000	asignada del fusible
11	25 A	25 A	32 A	40 A	40 A	63 A	63 A	100 A	100 A	1
13.2	20 A	25 A	25 A	32 A	40 A	63 A	63 A	80 A	100 A	24 kV
15	20 A	25 A	25 A	32 A	40 A	40 A	63 A	63 A	100 A	0.000
20	16 A	16 A	25 A	25 A	32 A	32 A	40 A	63 A	63 A	
30	10 A	16 A	16 A	20 A	25 A	25 A	32 A	40 A	40 A	36 kV

La intensidad nominal de los fusibles se escogerá por tanto en función de la potencia del transformador a proteger y del nivel de tensión de la red a la que se conecta (20 kV). En el caso que nos ocupa, la intensidad nominal de los fusibles será:

Potencia del transformador (kVA)	Tensión red (kV)	Intensidad nominal del fusible A.T. (A)
400	20	32

Este calibre de fusible verifica las siguientes condiciones de sobrecarga:

Intensidad de carga (empleo) del cable en las condiciones de instalación = 10,88 A (cálculo conductores punto 11.4)

Calibre del fusible MT = 16 A

Intensidad máxima de carga del cable en las condiciones de instalación = 400 A (apartado 4.1.1)

6.1.1 AJUSTE DEL DISPOSITIVO TÉRMICO O DE LOS RELÉS.

El dispositivo térmico se ajustará como máximo conforme a los siguientes valores de temperatura, tomando como temperatura máxima ambiente de 40 °C.

- o Transformadores en baño de aceite o éster vegetal:
 - Alarma 90°C.
 - Disparo 100°C.

Los relés de sobreintensidad, si los hubiere, se ajustarán conforme a los siguientes valores y tiempos de actuación, procurando mantener la selectividad con las protecciones aguas arriba y aguas abajo.

Relé se sobreintensidad de fase (50-51):

Intensidad de arranque un 40 % por encima de la intensidad primaria.

Curva Inversa según IEC, con índice de tiempo o factor K = 0.1.

Disparo Instantáneo por encima del valor de la corriente de inserción de los transformadores y del valor de la intensidad debida a un cortocircuito en el lado de baja tensión, y por debajo de la corriente de cortocircuito primaria. Por lo general se ajustará a 22 veces la intensidad nominal para potencias hasta 1000 kVA, y a 18 veces para potencias superiores.

o Relé se sobreintensidad de tierra (50N-51N):

Intensidad de arranque al 40 % de la intensidad de arranque de fase para potencias hasta 1000 kVA y al 20 % para potencias superiores.

Curva Inversa según IEC, con índice de tiempo o factor K = 0.1.

Disparo Instantáneo ajustado a 4 veces la intensidad de arranque de tierra.

6.2 BAJA TENSIÓN

La protección en el lado de Baja Tensión se realiza en el Cuadro de Distribución de baja tensión homologado por Compañía a instalar en el propio CT, que posee un seccionador vertical 3P+N y fusibles para las diferentes salidas (5) de baja tensión del CT.

7.-ESTUDIO DE COORDINACIÓN DE PROTECCIONES

En este apartado se trata la coordinación de protecciones, discriminando la coordinación de protecciones que ha de tener lugar entre la EDAR Valdemaqueda y el sistema eléctrico al que está conectada, y la coordinación de protecciones interna de la propia EDAR.

7.1 COORDINACIÓN DE PROTECCIONES EDAR / SISTEMA ELÉCTRICO

Según el artículo 110 del RD 1955/2000, debe existir una coordinación entre las protecciones de instalaciones particulares y las de la empresa distribuidora eléctrica, a fin de evitar en la medida de lo posible la transmisión de defectos y sus consecuencias en ambos sentidos.

Esto implica que las faltas en las instalaciones particulares, deben ser despejadas por sus propias protecciones, sin actuación de las de la red de distribución a la que se conectan, propiedad de Compañía.

Los ajustes de las protecciones en el punto de conexión serán proporcionados por la Compañía Distribuidora Eléctrica. Estos ajustes se indican en los oportunos manuales técnicos de Compañía (Iberdrola MT 2.51.01 y MT 2.80.12). Estos ajustes se tendrán en cuenta por el adjudicatario de las obras para verificar siempre los siguientes principios generales:

- Las protecciones no deben actuar cuando la planta se encuentre demandando el 100% de la potencia contratada ni con sobrecarga proyectada.
- Las protecciones deben ser capaces de soportar y abrir los interruptores con la máxima corriente de cortocircuito del sistema al que se encuentren conectadas.
- El tiempo de falta debe ser menor que el tiempo máximo de fusión de conductores y menor que los de las curva térmicas de los equipos.

En el caso que nos ocupa, la EDAR Valdemaqueda se conectará a la red de distribución de 400V propiedad de Iberdrola, debiendo seguir los criterios para la protección descritos más adelante.

La actuación de las protecciones particulares en caso de faltas en sus instalaciones debe ser anterior al accionamiento de las protecciones de Iberdrola. Esto se garantiza mediante una actuación del sistema de protecciones del cliente en tiempos que, siendo adaptados a las características de la instalación, sean asimismo inferiores a los tiempos máximos de actuación que se describen a continuación.

7.2 DISEÑO DE PARÁMETROS

En este apartado se trata la coordinación de protecciones, discriminando la actuación que ha de tener lugar en disyuntores y fusibles entre la salida del Cuadro de Distribución de Iberdrola hacia el CGBT de la EDAR Valdemaqueda. La aplicación de la configuración propuesta permitirá realizar el disparo más oportuno, es decir, haciendo que sólo quede sin tensión la planta y no todo el sistema de distribución BT.

Para conseguir que la coordinación de protecciones sea selectiva se procede a utilizar los calibres de los fusibles indicados en las normativas internas de la Compañía distribuidora, tanto para el que protege el cable de la red de distribución Iberdrola como para el que se instala en la caja de protección y medida, así como elegir un disyuntor para la entrada del CGBT con suficiente capacidad de regulación.

De esta manera, se consigue que el disparo en este cuadro CGBT sea selectivo respecto al fusible de 250A de la caja de protección y medida que alimenta en BT la instalación.

La secuencia de protecciones y equipo a actuar que se coordinan son las siguientes:

→ → Orden	de disparo de proteccio	nes
10	2º	3º
Entrada CGBT EDAR Valdemaqueda	Caja General de Protección y Medida (según MT 2.80.12)	Cuadro de distribución BT (según MT 2.51.01)
NSX250F Micrologic 5.2 E	CGP 250A	Cartuchos fusibles "gG" (sobrecargas) 250A

Se muestra a continuación el procedimiento de selección de calibre de protecciones:

 Fusibles para protección del cable de distribución (en armario de distribución, en CT), según MT 2.51.01:

11	Cartuchos fusibles "gG" (Sobrecargas) I_f = 1,6 I_n < 1,45 I_z $I_n \le 0.91 I_z(A)$				
Cable 0,6/1 kV					
Cable 0,6/1 kV	Directamente soterrados	En tubular soterrada	Al aire protegido del sol		
4 x 50 Al	100	100	100		
3 x 95 + 1 x 50 Al	160	125	160		
3 x 150 + 1 x 95 Al	200	200	250		
3 x 240 + 1 x 150 Al	250	250	315		

If: corriente convencional de fusión

In: corriente asignada de un cartucho fusible

Iz: corriente admisible para los conductores cargados s/UNE 20 460 -5-523

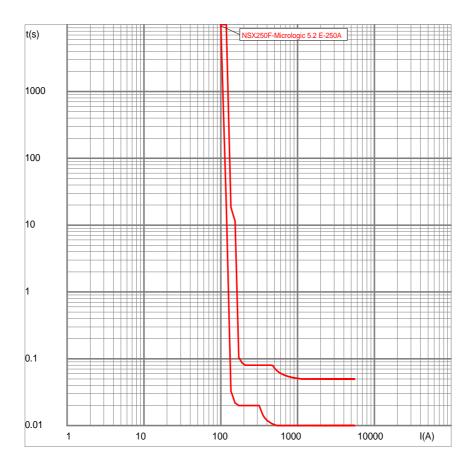
Cuando se prevea la protección de conductor por fusibles contra sobrecargas y cortocircuitos, deberá tenerse en cuenta la longitud de la línea que realmente se protege y que se indica en los siguientes cuadros expresados en metros:

me seem men	para tubi	ılares so	terradas		-	
Icc I máxima	580	715	950	1250	1650	2200
Fusibles "gG" Calibre In (A)	100	125	160	200	250	315
4 x 50 Al	192	156	117	89	67	51
3 x 95 + 1 x 50 Al	255	207	156	118	90	67
3 x 150 +1 x 95 Al	458	371	280	212	161	121
3 x 240 +1 x 150 Al	702	570	429	326	247	185

Dado que esta línea en proyecto es de aproximadamente 75m, queda suficientemente protegida.

 Fusibles de la Caja de Protección y Medida, junto a la puerta de acceso a la EDAR (según MT 2.80.12):

Tabla 2
Potencias admisibles en las CGP


Intensidad nominal CGP A	Potencia máxima admisible kW		
100	62		
160	99		
250	155		
400	249		

Puesto que la potencia a futuro de la EDAR Valdemaqueda se estima en torno a 120kW, se elige el calibre para el fusible de intensidad nominal 250A.

• Disyuntor de entrada al CGBT de la EDAR Valdemaqueda:

A continuación se muestra la configuración de parámetros que se ha diseñado para coordinar el disyuntor y las curvas resultantes:

Regulaciones

Ga&ma	Compact	
Interruptor automático	NSX250F	
Relé/curva	Micrologic 5.	2 E
Calibre	250.00	
Largo retardo		
lo		
Ir		100.0A
tr	0.5	0.5s
Corto retardo		
lm/lsd	1.50	150.0A
l ² t (retardo)	OFF	
tm/tsd	0.00	0.00s
Instantánea		
li	1.50	375.0A
Selectividad		
Límite	Aparato agua	as arriba

Asimismo, el contratista realizará los balances de cargas y de cortocircuito definitivos encaminados a determinar la coordinación de protecciones oportuna con los equipos aprobados finalmente a instalar.

Este estudio será actualizado por el contratista al finalizar la obra y sometido a aprobación por Dirección de Obra. A la finalización del estudio, deberá ser validado por un organismo de control autorizado (OCA) a elegir por Canal Gestión entre terna propuesta por contratista, quien deberá ajustar convenientemente las protecciones correspondientes según las conclusiones del estudio.

Junto a la documentación final, se suministrarán los certificados de pruebas de los relés en fábrica donde se indicarán los tarados con los que salen de la misma y que deberán coincidir con los señalados por el estudio de coordinación de protecciones.

8.-DIMENSIONADO DE LA VENTILACIÓN DEL CENTRO DE TRANSFORMACIÓN

Las rejillas de ventilación del edificio prefabricado seleccionado están diseñadas y dispuestas sobre las paredes de manera que la circulación del aire ventile eficazmente la sala del transformador. El diseño se ha realizado cumpliendo los ensayos de calentamiento según la norma UNE-EN 62271-102, tomando como base de ensayo los transformadores de 1000 KVA según la norma UNE 21428-1. Todas las rejillas de ventilación van provistas de una tela metálica mosquitero. El prefabricado seleccionado ha superado los ensayos de calentamiento realizados en el Laboratorio Central Oficial de Electrotecnia (LCOE).

9.-DIMENSIONES DEL POZO APAGAFUEGOS.

El foso de recogida de aceite tiene que ser capaz de alojar la totalidad del volumen de agente refrigerante que contiene el transformador en caso de su vaciamiento total.

Potencia del transformador (kVA)	Volumen mínimo del foso (litros)
400	480

El recinto en que se ubica el transformador, va a disponer de una cuba de recogida de aceite. Será de hormigón totalmente estanca con una capacidad mínima de 480 litros, diseñadas para recoger en su interior todo el aceite del transformador. La parte superior dispone de una bandeja apagafuegos de acero perforada y cubierta por grava.

Dado que el foso de recogida de aceite del prefabricado será de 760 litros para cada transformador, no habrá ninguna limitación en este sentido.

10.- CÁLCULO DE LAS INSTALACIONES DE PUESTA A TIERRA ASOCIADAS AL CENTRO DE TRANSFORMACIÓN

10.1 INVESTIGACIÓN DE LAS CARACTERÍSTICAS DEL SUELO

Se deberá realizar una investigación de las características del suelo, para conocer la resistividad del mismo.

Se determina la resistividad media superficial de 150 Ohm·m. a falta de confirmación de este valor.

10.2 DETERMINACIÓN DE LAS CORRIENTES MÁXIMAS DE PUESTA A TIERRA Y DEL TIEMPO MÁXIMO CORRESPONDIENTE A LA ELIMINACIÓN DEL DEFECTO

En las instalaciones de Media Tensión, los parámetros que determinan los cálculos de faltas a tierra son las siguientes:

De la red:

- Tipo de neutro. El neutro de la red puede estar aislado, rígidamente unido a tierra, unido a esta mediante resistencias o impedancias. Esto producirá una limitación de la corriente de la falta, en función de las longitudes de líneas o de los valores de impedancias en cada caso.
- Tipo de protecciones. Cuando se produce un defecto, éste se eliminará mediante la apertura de un elemento de corte que actúa por indicación de un dispositivo relé de intensidad, que puede actuar en un tiempo fijo (tiempo fijo), o según una curva de tipo inverso (tiempo dependiente). Adicionalmente,

pueden existir reenganches posteriores al primer disparo, que sólo influirán en los cálculos si se producen en un tiempo inferior a los 0,5 segundos.

No obstante, y dada la casuística existente dentro de las redes de cada compañía suministradora, en ocasiones se debe resolver este cálculo considerando la intensidad máxima empírica y un tiempo máximo de ruptura.

Según los datos de la red proporcionados por la compañía suministradora (IBERDROLA), el tiempo máximo de desconexión del defecto es de 0.5s.

Por otra parte, los valores de la impedancia de puesta a tierra del neutro, corresponden a:

Rn = 0
$$\Omega$$
 y Xn = 5.7 Ω . Con $|Zn| = \sqrt{Rn^2 + Xn^2}$

La intensidad máxima de defecto se producirá en el caso hipotético de que la resistencia de puesta a tierra del Centro de Transformación sea nula. Dicha intensidad será, por tanto igual a:

$$Id_{(m\acute{a}x)} = \frac{Us_{(m\acute{a}x)}}{\sqrt{3} Zn}$$

con lo que el valor obtenido es Id=2025.79 A, valor que la Compañía redondea o toma como valor genérico de 2228 A.

10.3 DISEÑO PRELIMINAR DE LA INSTALACIÓN DE TIERRA

El diseño preliminar de la instalación de puesta a tierra se realiza basándose en las configuraciones tipo presentadas en el Anexo 2 del método de cálculo de instalaciones de puesta a tierra de UNESA, que esté de acuerdo con la forma y dimensiones del Centro de Transformación, según el método de cálculo desarrollado por este organismo.

10.3.1 TIERRA DE PROTECCIÓN

Se conectarán a este sistema las partes metálicas de la instalación que no estén en tensión normalmente pero puedan estarlo a consecuencia de averías o causas fortuitas, tales como los chasis y los bastidores de los aparatos de maniobra,

envolventes metálicas de las cabinas prefabricadas y carcasas de los transformadores.

Para los cálculos a realizar emplearemos las expresiones y procedimientos según el "Método de cálculo y proyecto de instalaciones de puesta a tierra para centros de transformación de tercera categoría", editado por UNESA, conforme a las características del centro de transformación objeto del presente cálculo, siendo, entre otras, las siguientes:

Para la tierra de protección optaremos por un sistema de las características que se indican a continuación:

- Identificación: código 5/82 del método de cálculo de tierras de UNESA.
- Parámetros característicos:

 $Kr = 0.0572 \Omega/(\Omega *m).$

 $Kp = 0.00345 \text{ V/(}\Omega \text{ *m*A)}$

Descripción:

Estará constituida por 8 picas en hilera unidas por un conductor horizontal de cobre desnudo de 50 mm² de sección.

Las picas tendrán un diámetro de 14mm y una longitud de 2.00m Se enterrarán verticalmente a una profundidad de 0.5m y la separación entre cada pica y la siguiente será de 3.00m. Con esta configuración, la longitud de conductor desde la primera pica a la última será de 21 m, dimensión que tendrá que haber disponible en el terreno.

Nota: se pueden utilizar otras configuraciones siempre y cuando los parámetros Kr y Kp de la configuración escogida sean inferiores o iguales a los indicados en el párrafo anterior.

La conexión desde el Centro hasta la primera pica se realizará con cable de cobre aislado de 0.6/1 kV protegido contra daños mecánicos.

10.3.2 TIERRA DE SERVICIO

Se conectarán a este sistema el neutro del transformador, así como la tierra de los secundarios de los transformadores de tensión e intensidad de la celda de medida.

Las características de las picas serán las mismas que las indicadas para la tierra de protección. La configuración escogida se describe a continuación:

- Identificación: código 5/62 del método de cálculo de tierras de UNESA.
- Parámetros característicos:

$$Kr = 0.073 \Omega / (\Omega *m)$$

$$Kp = 0.012 \text{ V/(} \Omega \text{ *m*A)}$$

Descripción:

Estará constituida por 6 picas en hilera unidas por un conductor horizontal de cobre desnudo de 50 mm² de sección.

Las picas tendrán un diámetro de 14 mm y una longitud de 2.00 m. Se enterrarán verticalmente a una profundidad de 0.5 m y la separación entre cada pica y la siguiente será de 3.00 m. Con esta configuración, la longitud de conductor desde la primera pica a la última será de 15 m, dimensión que tendrá que haber disponible en el terreno.

Nota: se pueden utilizar otras configuraciones siempre y cuando los parámetros Kr y Kp de la configuración escogida sean inferiores o iguales a los indicados en el párrafo anterior.

La conexión desde el Centro hasta la primera pica se realizará con cable de cobre aislado de 0.6/1 kV protegido contra daños mecánicos.

El valor de la resistencia de puesta a tierra de este electrodo deberá ser inferior a 37Ω . Con este criterio se consigue que un defecto a tierra en una instalación de Baja Tensión protegida contra contactos indirectos por un interruptor diferencial de sensibilidad 650mA, no ocasione en el electrodo de puesta a tierra una tensión superior a 24 Voltios (= $37 \times 0,650$).

Existirá una separación mínima entre las picas de la tierra de protección y las picas de la tierra de servicio a fin de evitar la posible transferencia de tensiones elevadas a la red de Baja Tensión. Dicha separación está calculada en el apartado 10.3.7.

10.3.3 CÁLCULO DE LA RESISTENCIA DEL SISTEMA DE TIERRAS

TIERRA DE PROTECCIÓN:

Para el cálculo de la resistencia de la puesta a tierra de las masas del Centro (Rt), intensidad y tensión de defecto correspondientes (Id, Ud), utilizaremos las siguientes fórmulas:

o Resistencia del sistema de puesta a tierra, Rt:

$$Rt = Kr *\sigma$$

o Intensidad de defecto, Id:

$$Id = \frac{20.000 \text{ V}}{\sqrt{3} \sqrt{(Rn+Rt)^2 + Xn^2}}$$

o Tensión de defecto, Ud:

$$Ud = Id * Rt$$
.

Siendo:

$$\sigma = 150 \Omega m$$

$$Kr = 0.0572 \Omega/(\Omega m)$$

se obtienen los siguientes resultados:

$$Rt = 8.6 \Omega$$

Id = 1120,98 A

Ud = 9618 V

El aislamiento de las instalaciones de baja tensión del C.T. deberá ser mayor o igual que la tensión máxima de defecto calculada (Ud), por lo que deberá ser como mínimo de 10.000 Voltios.

De esta manera se evitará que las sobretensiones que aparezcan al producirse un defecto en la parte de Alta Tensión deterioren los elementos de Baja Tensión del centro, y por ende no afecten a la red de Baja Tensión.

Comprobamos asimismo que la intensidad de defecto calculada es superior a 100 Amperios, lo que permitirá que pueda ser detectada por las protecciones normales.

TIERRA DE SERVICIO:

Rt = Kr *
$$\sigma$$
 = 0,073 * 150 = 11 Ω

que vemos que es inferior a 37 Ω .

10.3.4 <u>CÁLCULO DE LAS TENSIONES EN EL EXTERIOR DE LA INSTALACIÓN.</u>

Con el fin de evitar la aparición de tensiones de contacto elevadas en el exterior de la instalación, las puertas y rejas de ventilación metálicas que dan al exterior del centro no tendrán contacto eléctrico alguno con masas conductoras que, a causa de defectos o averías, sean susceptibles de quedar sometidas a tensión.

Con estas medidas de seguridad, no será necesario calcular las tensiones de contacto en el exterior, ya que éstas serán prácticamente nulas.

Por otra parte, la tensión de paso en el exterior vendrá determinada por las características del electrodo y de la resistividad del terreno, por la expresión:

Up = Kp * σ * Id = 0,00345 * 150 * 1120,98 = 580,1 V

10.3.5 <u>CÁLCULO DE LAS TENSIONES EN EL INTERIOR DE LA</u> INSTALACIÓN.

El piso de los Centros de transformación estará constituido por un mallazo electrosoldado con redondos de diámetro no inferior a 4 mm. formando una retícula no superior a 0,30 x 0,30 m. Este mallazo se conectará como mínimo en dos puntos preferentemente opuestos a la puesta a tierra de protección del Centro. Con esta disposición se consigue que la persona que deba acceder a una parte que pueda quedar en tensión, de forma eventual, está sobre una superficie equipotencial, con lo que desaparece el riesgo inherente a la tensión de contacto y de paso interior. Este mallazo se cubrirá con una capa de hormigón de 10 cm. de espesor como mínimo.

El edifico prefabricado de hormigón estará construido de tal manera que, una vez fabricado, su interior sea una superficie equipotencial. Todas las varillas metálicas embebidas en el hormigón que constituyan la armadura del sistema equipotencial estarán unidas entre sí mediante soldadura eléctrica.

Esta armadura equipotencial se conectará al sistema de tierras de protección (excepto puertas y rejillas, que como ya se ha indicado no tendrán contacto eléctrico con el sistema equipotencial; debiendo estar aisladas de la armadura con una resistencia igual o superior a 10.000 ohmios a los 28 días de fabricación de las paredes).

Así pues, no será necesario el cálculo de las tensiones de paso y contacto en el interior de la instalación, puesto que su valor será prácticamente nulo.

No obstante, y según el método de cálculo empleado, la existencia de una malla equipotencial conectada al electrodo de tierra implica que la tensión de paso de acceso es equivalente al valor de la tensión de defecto, que se obtiene mediante la expresión:

10.3.6 CÁLCULO DE LAS TENSIONES APLICADAS.

La tensión máxima de contacto aplicada, en voltios que se puede aceptar, será conforme a la Tabla 1 de la ITC-RAT 13 de instalaciones de puestas a tierra que se transcribe a continuación:

Duración de la corriente de falta, t _F (s)	Tensión de contacto aplicada admisible, Uca (V)
0.05	735
0.1	633
0.2	528
0.3	420
0.4	310
0.5	204
1.0	107

El valor de tiempo de duración de la corriente de falta proporcionada por la compañía eléctrica suministradora es de 0.5 seg., dato que aparece en la tabla adjunta, por lo que la máxima tensión de contacto aplicada admisible al cuerpo humano es:

Para la determinación de los valores máximos admisibles de la tensión de paso en el exterior, y en el acceso al Centro, emplearemos las siguientes expresiones:

$$\begin{split} &U_{P(exterior)} = 10U_{ca} \left(1 + \frac{2R_{a1} + 6\sigma}{1000}\right) \\ &U_{P(acceso)} = 10U_{ca} \left(1 + \frac{2R_{a1} + 3\sigma + 3\sigma_h}{1000}\right) \end{split}$$

Siendo:

Uca = Tensiones de contacto aplicada = 204 V

Ra1 = Resistencia del calzado = 2.000Ω .m

 σ = Resistividad del terreno = 150 Ω .m

 σ h = Resistividad del hormigón = 3.000 Ω .m

obtenemos los siguientes resultados:

Up(exterior) = 12036 V

Up(acceso) = 29478 V

Así pues, comprobamos que los valores calculados son inferiores a los máximos admisibles:

- en el exterior:

- en el acceso al C.T.:

Ud = 9618 V. < Up(acceso) = 29478 V.

10.3.7 INVESTIGACIÓN DE TENSIONES TRANSFERIBLES AL EXTERIOR.

Al no existir medios de transferencia de tensiones al exterior no se considera necesario un estudio previo para su reducción o eliminación.

No obstante, con el objeto de garantizar que el sistema de puesta a tierra de servicio no alcance tensiones elevadas cuando se produce un defecto, existirá una distancia de separación mínima Dmín, entre los electrodos de los sistemas de puesta a tierra de protección y de servicio, determinada por la expresión:

$$Dmin = \frac{\sigma * Id}{2.000 * \pi}$$

con:

 $\sigma = 150 \sigma m$

Id = 1120.98 A

obtenemos el valor de dicha distancia:

Dmin = 26,77 m

10.3.8 <u>CORRECCIÓN Y AJUSTE DEL DISEÑO INICIAL ESTABLECIENDO</u> <u>EL DEFINITIVO.</u>

No se considera necesario la corrección del sistema proyectado.

No obstante, si el valor medido de las tomas de tierra resultara elevado y pudiera dar lugar a tensiones de paso o contacto excesivas, se corregirían estas mediante la disposición de una alfombra aislante en el suelo del Centro, o cualquier otro medio que asegure la no peligrosidad de estas tensiones.

11.- CÁLCULO DE CONDUCTORES

Los cables se han calculado por intensidad de corriente y por caída de tensión.

11.1 CÁLCULO POR DENSIDAD DE CORRIENTE

La intensidad se ha obtenido de las fórmulas:

$$I_n = \frac{K \times P}{\sqrt{3} \times U \times \cos \alpha}$$
 Para líneas trifásicas

$$I_n = \frac{P}{II}$$
 Para líneas monofásicas

donde:

I = Intensidad de corriente en amperios

K = Coeficiente de carga

K = 1,8 para lámparas de descarga

K = 1,0 para las demás cargas

P = Potencia activa en vatios

U = Tensión de servicio, en voltios

U = 400 V para líneas trifásicas

U = 230 V para líneas monofásicas

 $\cos \alpha = 0.8$

11.2 CÁLCULO POR CAÍDA DE TENSIÓN

La caída de tensión se ha calculado por las fórmulas:

$$\Delta U = \frac{K \times P \times L}{C \times S \times U}$$
 Para líneas trifásicas

$$\Delta U = \frac{2 \times K \times P \times L}{C \times S \times U}$$
 Para líneas monofásicas

Donde:

DU = Caída de tensión del tramo en voltios

K = Coeficiente por tipo de carga

K = 1,8 para lámparas de descarga

K = 1 para las demás cargas

P = Potencia activa transportada, en vatios

L = Longitud de la línea en metros

C = Conductibilidad del cobre

S = Sección del conductor de fase en mm2

U = Tensión entre fases en voltios

U = 400 V para líneas trifásicas

U = 230 V para líneas monofásicas

Cálculo de la conductividad del cobre:

$$C = 1/\rho$$

$$\rho = \rho_{20}[1+\alpha \ (T-20)]$$

$$T = T_0 + [(T_{max}-T_0) (I/I_{max})^2]$$

Siendo,

C = Conductividad del conductor a la temperatura T.

 ρ = Resistividad del conductor a la temperatura T.

 ρ_{20} = Resistividad del conductor a 20°C.

Cu = 0.018

AI = 0.029

 α = Coeficiente de temperatura:

Cu = 0.00392

AI = 0.00403

T = Temperatura del conductor (°C).

 T_0 = Temperatura ambiente (°C):

Cables enterrados = 25°C

Cables al aire = 40°C

T_{max} = Temperatura máxima admisible del conductor (°C):

XLPE, EPR = 90°C

 $PVC = 70^{\circ}C$

I = Intensidad prevista por el conductor (A).

I_{max} = Intensidad máxima admisible del conductor (A).

Según el apartado 2.2.2. de la Instrucción ITC-BT-19, la caída de tensión en una instalación interior o receptora que no cuenta con transformador propio, puede llegar a ser del 3% para alumbrado y del 5% para la fuerza y otros usos.

11.3 INTENSIDAD ADMISIBLE

Los cálculos han sido realizados, siempre del lado de la seguridad y cumpliendo con lo prescrito en el Real Decreto 842/2.002. Para instalaciones enterradas en zanja en el interior de tubos o similares (ITC-BT-07 3.1.3), para determinar la intensidad admisible de los conductores se ha considerado un coeficiente de seguridad de k=0,8.

Además se los cables se dimensionan para que puedan soportar un 25 % más de la intensidad nominal prevista para cumplir con la ITC-BT-47, que exige esta condición para la instalaciones de motores.

11.4 CONDUCTORES A EMPLEAR

A continuación se incluyen las tablas de caídas de tensión de cada componente de la instalación:

Acometida a C.T. Iberdrola		
-Tipo de conductor	HEPRZ1 12/20kV	
-Potencia	320,00	KW
-Longitud	1200,00	m
-Tension	20000,00	V.
-Nº de cables POR FASE	1,00	
-Seccion unitaria	240,00	mm2
-Seccion total	240,00	mm2
-Caida de tension	0,01	%
-Intensidad maxima con factor de corrección	320,00	A.
-Intensidad soportada por el conductor	10,88	A.
-Longitud total de conductor de fase	3600,00	m.
DE CT Iberdrola A C.G.P.M. (Red de distribución))/74 /0) Al 0 0/4 I/1/	10.7
-Tipo de conductor	XZ1 (S) AI 0,6/1 KV	KV
-Potencia	120,26	KW
-Longitud	75,00	m
-Tension	400,00	٧.
-N⁰ de cables POR FASE	1,00	AL
-Seccion unitaria	240,00	mm2
-Seccion total	240,00	mm2
-Caida de tension	0,78	%
-Intensidad maxima con factor de corrección (galeria)	336,00	A.
-Intensidad soportada por el conductor	217,23	A.
-Longitud total de conductor de fase	225,00	m.
-Longitud total de conductor en neutro	75,00	m.
DE C.G.P.M. A C.G.B.T (Acometida individual)		
-Tipo de conductor	RZ1 Cu 0,6/1 KV	KV
-Potencia	120,26	KW
-Longitud	100,00	m
-Tension	400,00	V.
-Nº de cables POR FASE	1,00	Cu
-Seccion unitaria	150,00	mm2
-Seccion total	150,00	mm2

-Caida de tension

-Intensidad máxima admisible (montaje F)

-Intensidad soportada por el conductor

-Longitud total de conductor de fase

-Longitud total de conductor en neutro

%

A.

A.

m.

m.

1,67

308,00

217,23

300,00

100,00

11.5 REDES SUBTERRANEAS PARA DISTRIBUCIÓN EN BAJA TENSIÓN

Para los cables instalados en instalación enterrada se ha aplicado lo dispuesto por el reglamento de baja tensión en su ITC-BT-07.

11.5.1 <u>DIRECTAMENTE ENTERRADOS</u>

La profundidad, hasta la parte inferior del cable, no será menor de 0,60 m en acera, ni de 0,80 m en calzada. Cuando existan impedimentos que no permitan lograr las mencionadas profundidades, éstas podrán reducirse, disponiendo protecciones mecánicas suficientes.

Para conseguir que el cable quede correctamente instalado sin haber recibido daño alguno, y que ofrezca seguridad frente a excavaciones hechas por terceros, en la instalación de los cables se seguirán las instrucciones descritas a continuación:

El lecho de la zanja que va a recibir el cable será liso y estará libre de aristas vivas, cantos, piedras, etc. En el mismo se dispondrá una capa de arena de mina o de río lavada, de espesor mínimo 0,05 m sobre la que se colocará el cable. Por encima del cable irá otra capa de arena o tierra cribada de unos 0,10 m de espesor. Ambas capas cubrirán la anchura total de la zanja, la cual será suficiente para mantener 0,05 m entre los cables y las paredes laterales.

Por encima de la arena todos los cables deberán tener una protección mecánica, como por ejemplo, losetas de hormigón, placas protectoras de plástico, ladrillos o rasillas colocadas transversalmente. Podrá admitirse el empleo de otras protecciones mecánicas equivalentes. Se colocará también una cinta de señalización que advierta de la existencia del cable eléctrico de baja tensión. Su distancia mínima al suelo será de 0,10 m, y a la parte superior del cable de 0,25 m.

Se admitirá también la colocación de placas con la doble misión de protección mecánica y de señalización.

11.5.2 EN CANALIZACIONES ENTUBADAS

Serán conformes con las especificaciones del apartado 1.2.4. de la ITC-BT-21. No se instalará más de un circuito por tubo.

Se evitarán, en lo posible, los cambios de dirección de los tubos. En los puntos donde se produzcan y para facilitar la manipulación de los cables, se dispondrán arquetas con tapa, registrables o no. Para facilitar el tendido de los cables, en los tramos rectos se instalarán arquetas intermedias, registrables, ciegas o simplemente calas de tiro, como máximo cada 40 m. Esta distancia podrá variarse de forma razonable, en función de derivaciones, cruces u otros condicionantes viarios. A la entrada en las arquetas, los tubos deberán quedar debidamente sellados en sus extremos para evitar la entrada de roedores y de agua.

11.5.3 GALERÍAS O ZANJAS REGISTRABLES

En tales galerías se admite la instalación de cables eléctricos de alta tensión, de baja tensión y de alumbrado, control y comunicación.

No se admite la existencia de canalizaciones de gas. Sólo se admite la existencia de canalizaciones de agua, si se puede asegurar que en caso de fuga, el agua no afecte a los demás servicios (por ejemplo, en un diseño de doble cuerpo, en el que en un cuerpo se dispone una canalización de agua, y en el otro cuerpo, estanco respecto al anterior cuando tiene colocada la tapa registrable, se disponen los cables de baja tensión, de alta tensión, de alumbrado público, semáforos, control y comunicación).

Las condiciones de seguridad más destacables que deben cumplir este tipo de instalación son:

- estanqueidad de los cierres
- buena renovación de aire en el cuerpo ocupado por los cables eléctricos, para evitar acumulaciones de gas y condensación de humedades, y mejorar la disipación de calor

11.5.4 EN BANDEJAS, SOPORTES, PALOMILLAS O DIRECTAMENTE SUJETOS A LA PARED

Normalmente, este tipo de instalación sólo se empleará en subestaciones u otras instalaciones eléctricas y en la parte interior de edificios, no sometida a la intemperie, y en donde el acceso quede restringido al personal autorizado. Cuando las zonas por las que discurra el cable sean accesibles a personas o vehículos, deberán disponerse protecciones mecánicas que dificulten su accesibilidad.

11.5.5 CIRCUITOS CON CABLES EN PARALELO

Cuando la intensidad a transportar sea superior a la admisible por un solo conductor se podrá instalar más de un conductor por fase, según los siguientes criterios:

- o emplear conductores del mismo material, sección y longitud.
- o los cables se agruparán al tresbolillo, en ternas dispuestas en uno o varios niveles.

11.6 INSTALACIONES RECEPTORAS

También se ha tenido en cuenta la instrucción ITC-BT-19: "Instalaciones interiores o receptoras. Prescripciones generales".

Asimismo, se ha cumplido la Tabla referente a las secciones mínimas de los conductores de fase respectivos.

TABLA V. CONDUCTOR	RES DE PROTECCIÓN
Sección del conductor de fase de la instalación (mm²)	Sección mínima del conductor de protección (mm²)
S < 16	5
<i>16 < S < 35</i>	<i>16</i>
S > 35	5/2

11.6.1 SECCIÓN Y TIPOLOGÍA DE CABLES UTILIZADOS

Como secciones mínimas de conductores se han adoptado las siguientes:

Cables de alimentación a Motores: 2,5 mm2

Cables de alimentación a Cuadros locales de alumbrado: 6 mm2

Cables de alimentación a tomas de corriente: 2,5 mm2

Cables de alimentación a puntos de alumbrado: 1,5 mm2

Cables de alimentación del alumbrado exterior: 6 mm2

Cables de mando y control: 1,5 mm2

Los conductores proyectados son de los tipos siguientes:

Cables de CT Iberdrola a Cuadro de Protección y Medida: XZ1(S) 0,6/1 KV

Cables de Cuadro de Protección y Medida a C.G.B.T.: RZ1 06/1 KV

Cables de Cuadro General a Cuadros Locales: RV-06/1 KV

Cables de Cuadros de Fuerza a motores y equipos: RV-0,6/1 KV

Cables para alimentaciones con variador: RVKV-K 0,6/1KV

Cables para instrumentación: VC4V-K (señales analógicas) y VV-K (señales digitales)

Cables en zonas con ambientes explosivos: RVFV-06/1 KV

Cables de iluminación en zonas nobles tendidos en falto techo: H07Z1-K

Madrid, Septiembre de 2016

Los Ingenieros Autores del Proyecto

Emilio Villar González

Miguel Abad Castiella

El Director del Proyecto

V°B° Jefa de Área de Proyectos de Saneamiento y Reutilización

Ruth Ortega Cosío

María Casanova Sanjuan

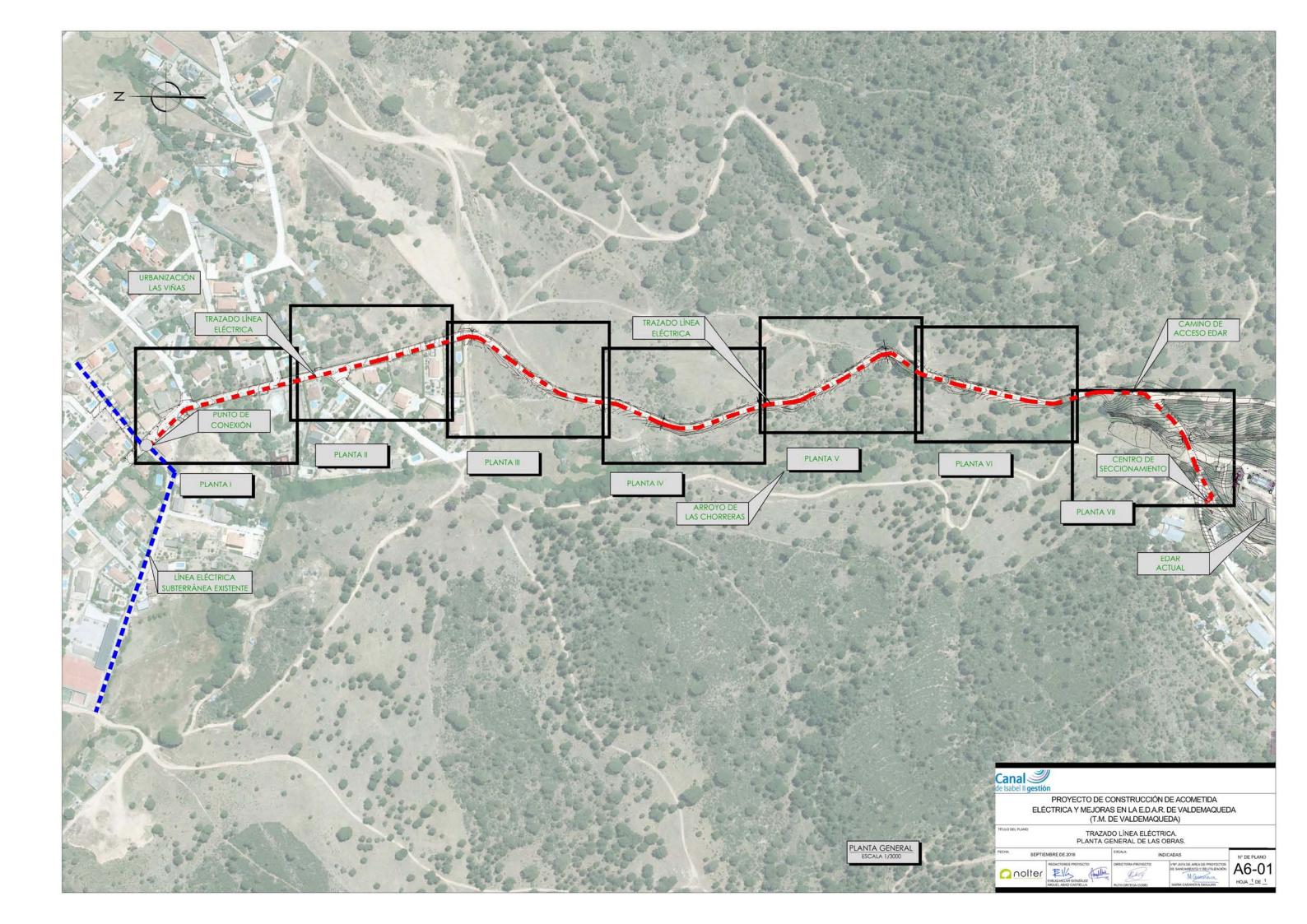
DOCUMENTO Nº 2 PLANOS

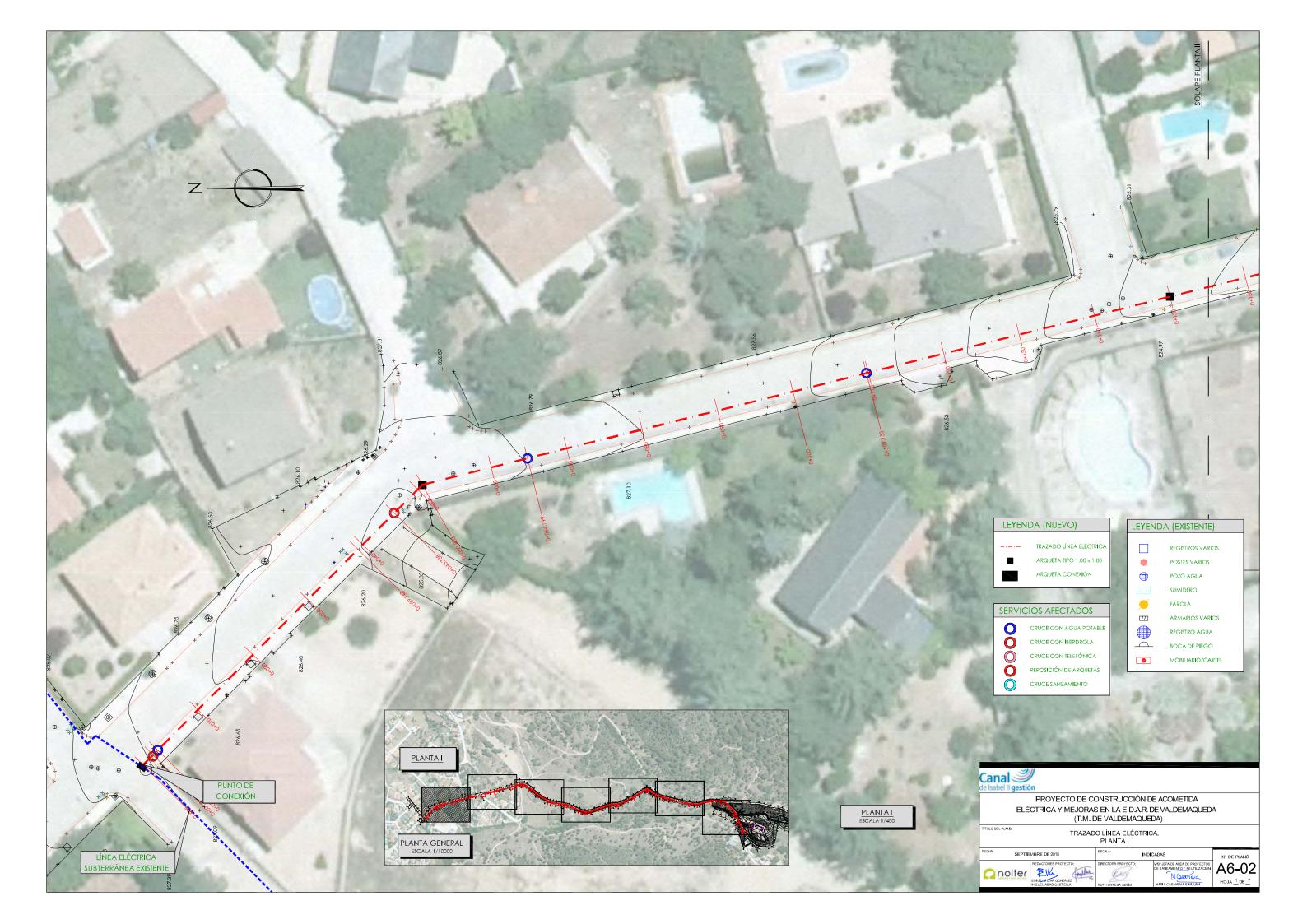
ÍNDICE DE PLANOS

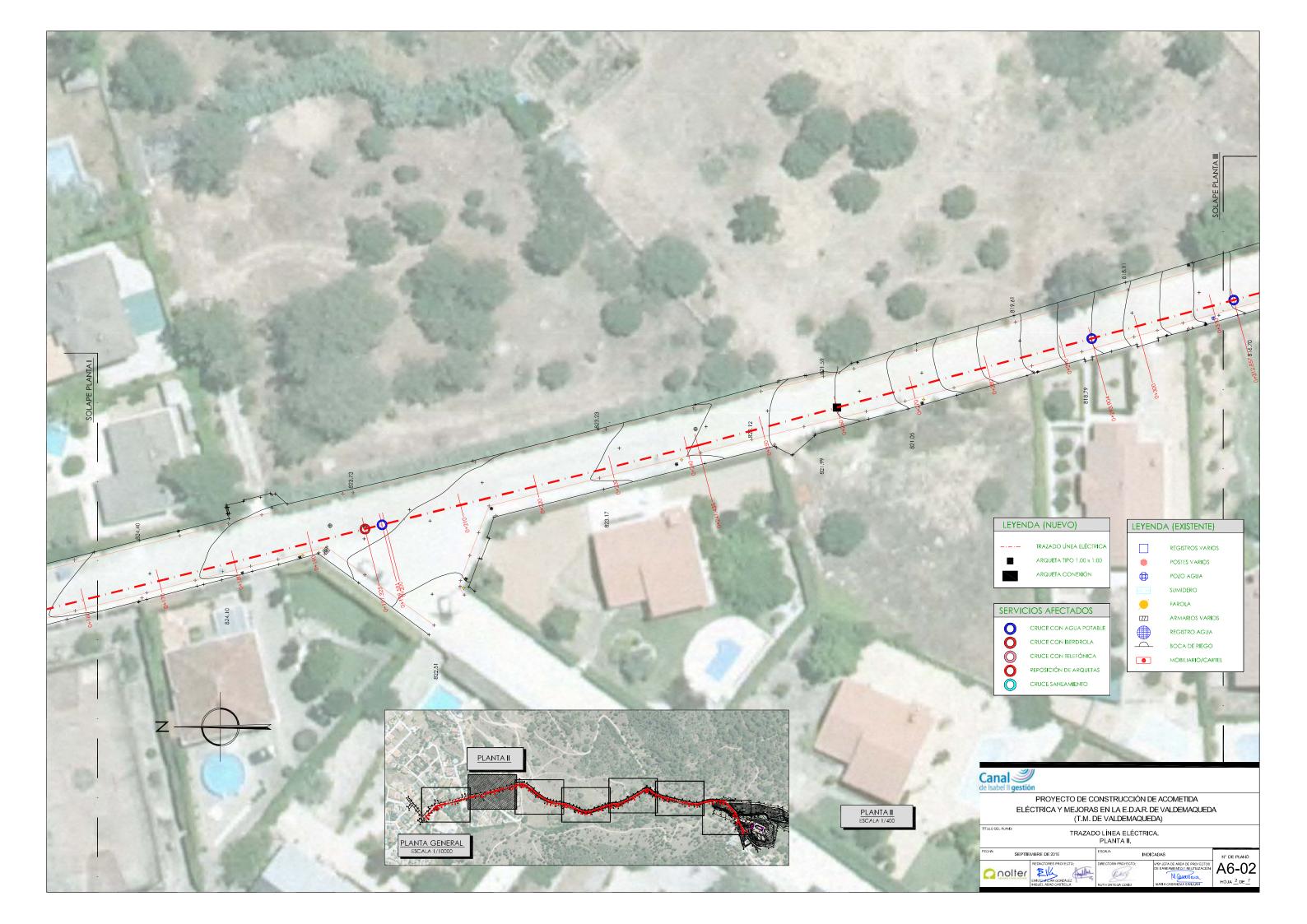
ÍNDICE DE PLANOS

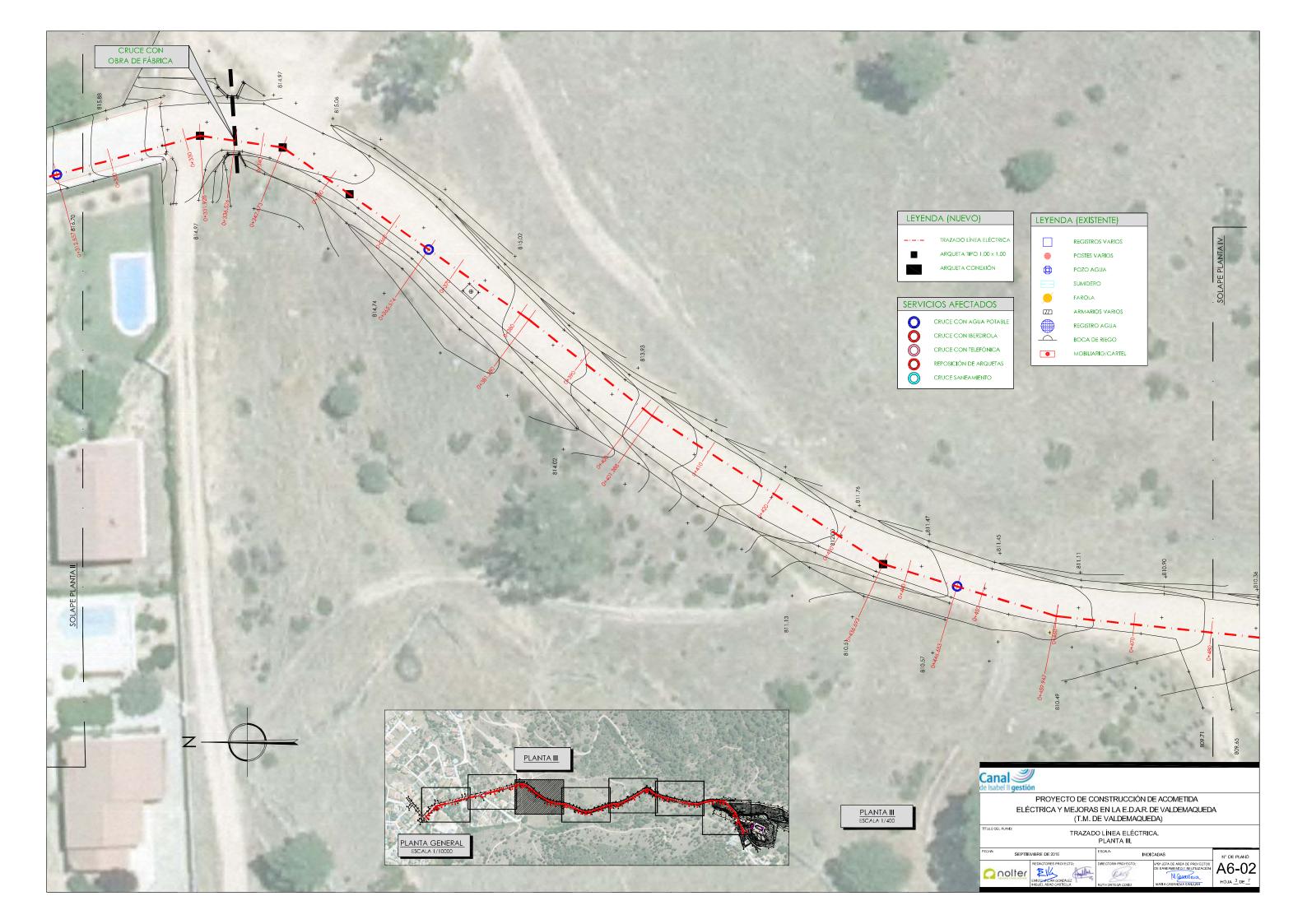
LÍNEA ELÉCTRICA

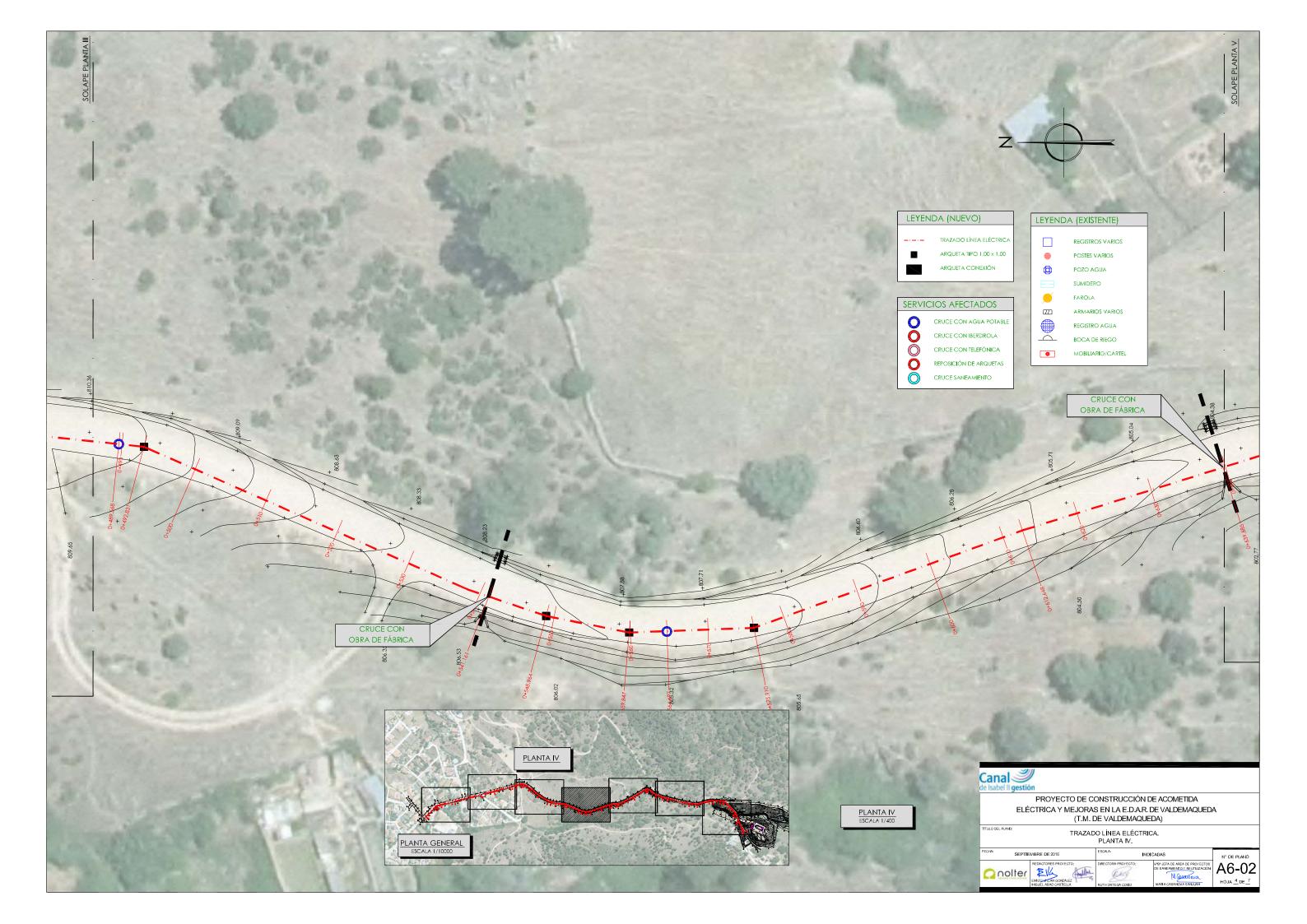
PLANTAS GENERALES

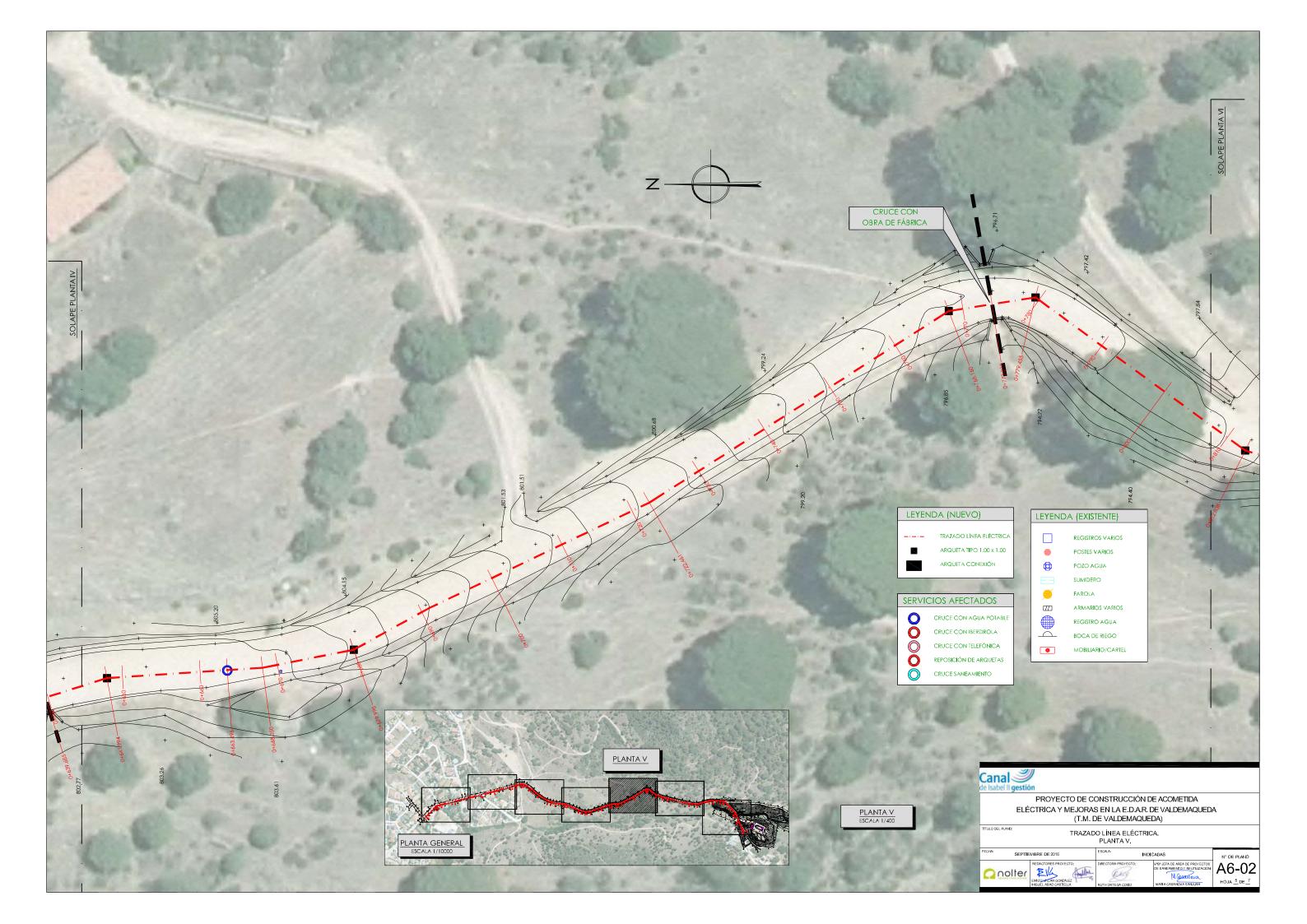

A6-01	TRAZADO LÍNEA ELÉCTRICA. PLANTA GEN OBRAS.	IERAL DE LAS HOJA 1 DE 1
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA I.	HOJA 1 DE 7
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA II.	HOJA 2 DE 7
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA III.	HOJA 3 DE 7
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA IV.	HOJA 4 DE 7
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA V.	HOJA 5 DE 7
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA VI.	HOJA 6 DE 7
A6-02	TRAZADO LÍNEA ELÉCTRICA. PLANTA VII.	HOJA 7 DE 7
LONGITUDII	NALES	
A6-03	TRAZADO LÍNEA ELÉCTRICA.LONGITUDINAL	I.
		HOJA 1 DE 7
A6-03	TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL	
		HOJA 2 DE 7
A6-03	TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL	III. HOJA 3 DE 7
A6-03	TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL	
7.0 00		HOJA 4 DE 7
A6-03	TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL	V.
		HOJA 5 DE 7
A6-03	TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL	VI.
		HOJA 6 DE 7
A6-03	TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL	
		HOJA 7 DE 7

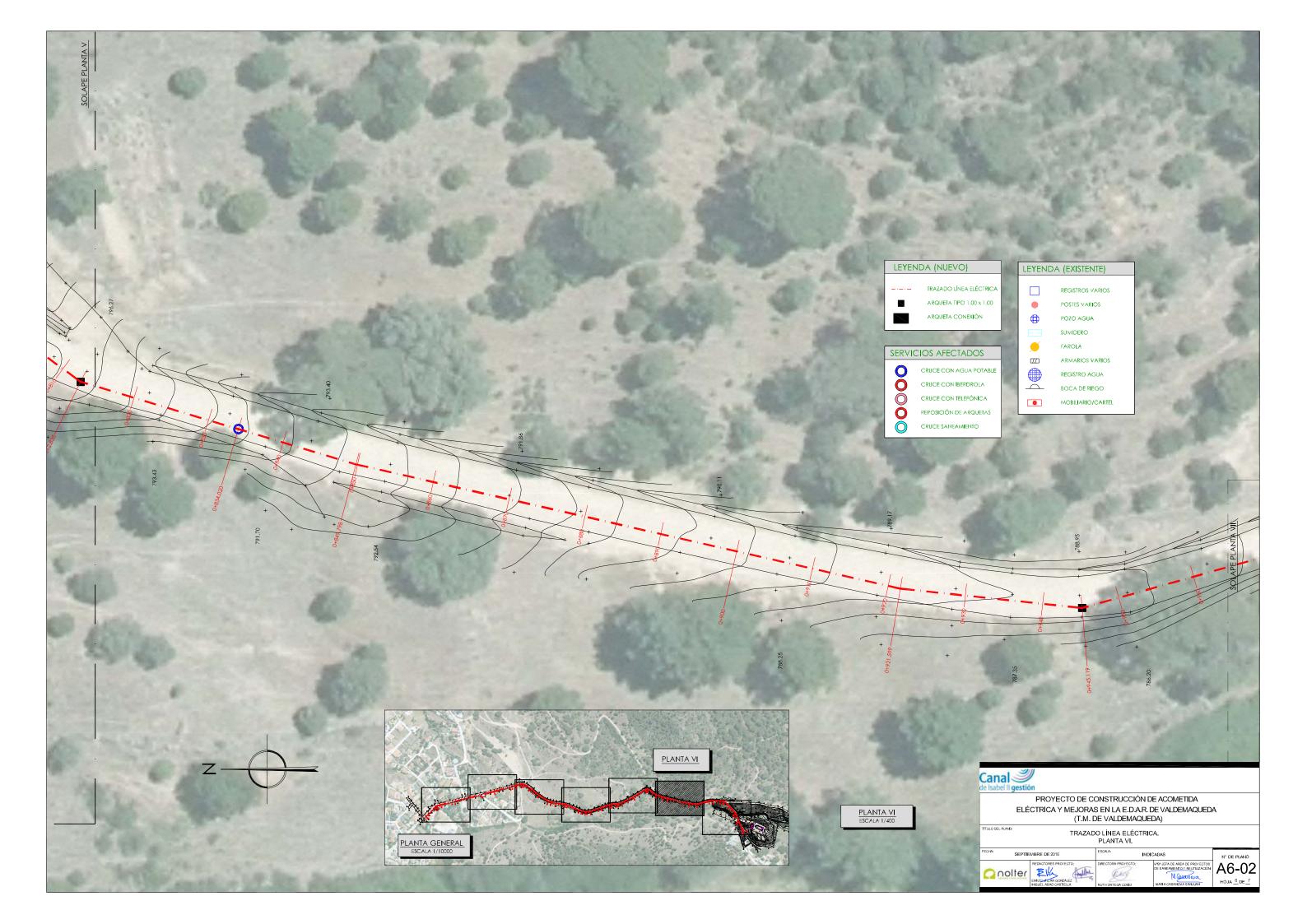


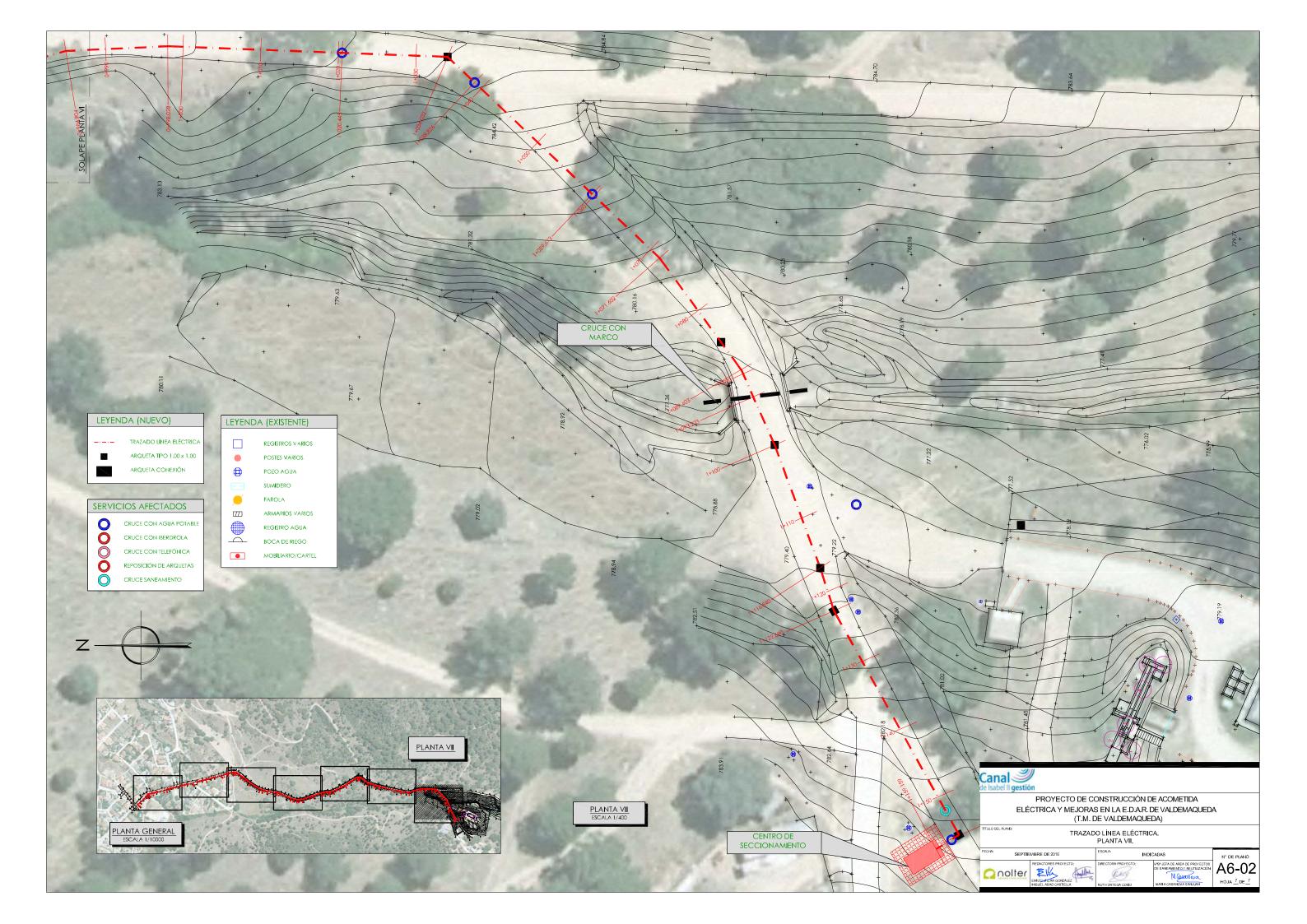

DETALLES CONSTRUCTIVOS

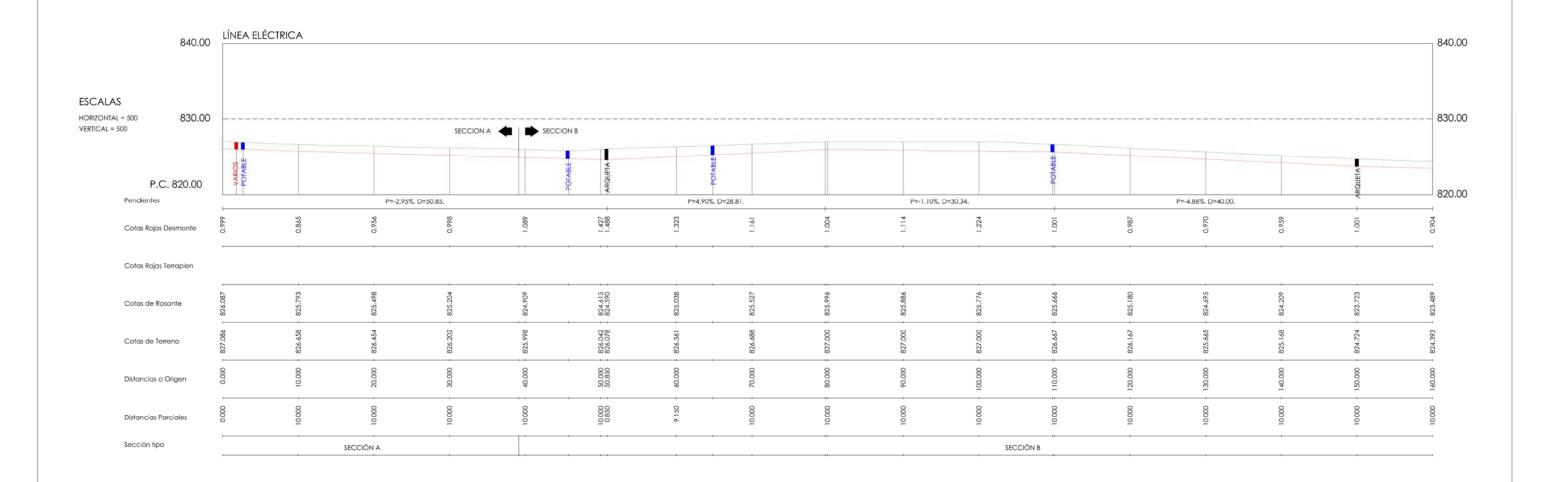

A6-04	DETALLES.	ARQUETAS	Υ	TAPAS.	PLANTAS	S Y
	SECCIONES.				HOJA 1	DE 1
A6-05	DETALLES. SI	ECCIONES TIPO	D Y D	ETALLES.	HOJA 1	DE 1
A6-06	DETALLES	CONSTRUCT	IVOS	. SECC	IONES	TIPO
	EJECUCIÓN DE LAS OBRAS.			HOJA 1	DE 1	

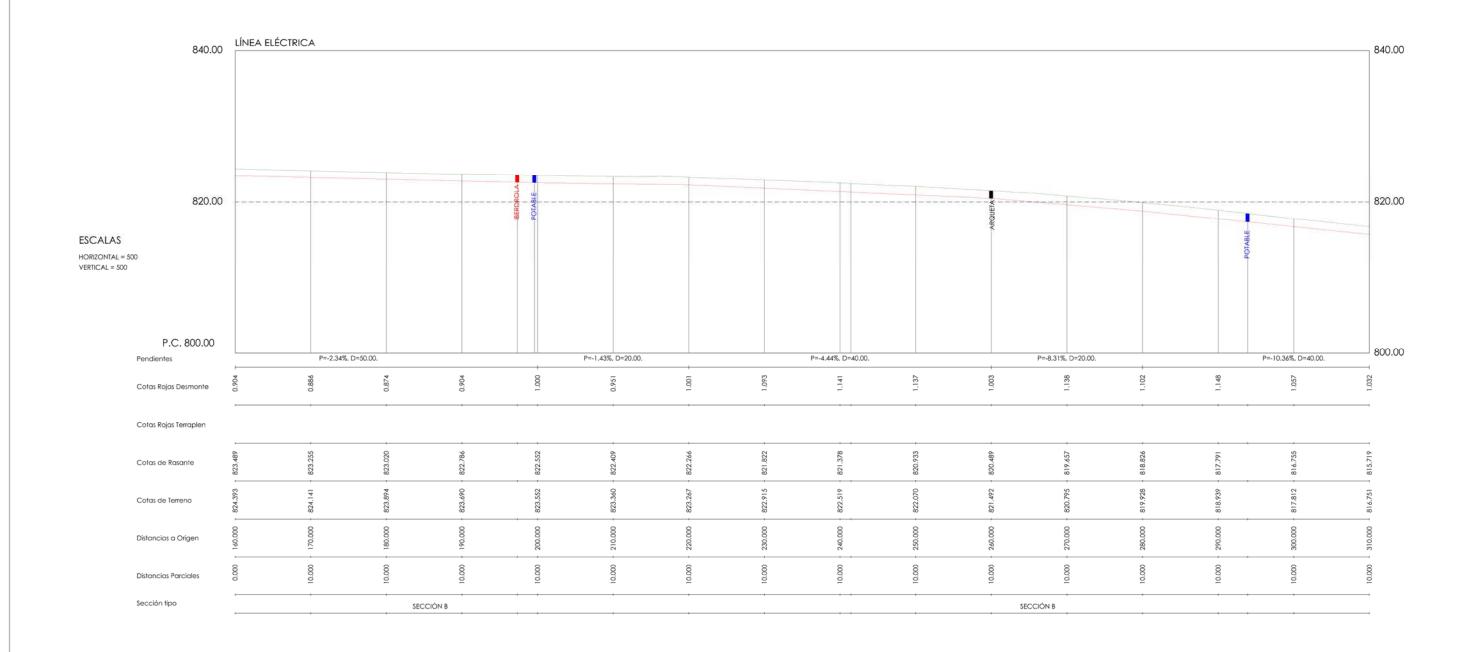

ESQUEMAS ELÉCTRICOS					
A6-07	ESQUEMA ELÉCTRICO. DISTRIBUCIÓN DE MEDIA TENSIÓN.				
	HOJA 1 DE 1				
A6-08	CENTRO DE SECCIONAMIENTO Y TRANSFORMACIÓN. PLANTA, SECCIÓN Y DETALLES. DEFINICIÓN GEOMÉTRICA Y EQUIPOS ELÉCTRICOS. HOJA 1 DE 1				
A6-09	CENTRO DE SECCIONAMIENTO Y TRASFORMACIÓN. FOSO. HOJA 1 DE 1				
A6-10	CENTRO DE SECCIONAMIENTO Y TRASFORMACIÓN. SISTEMAS DE PUESTA A TIERRA. PROTECCIÓN Y SERVICIO. HOJA 1 DE 1				





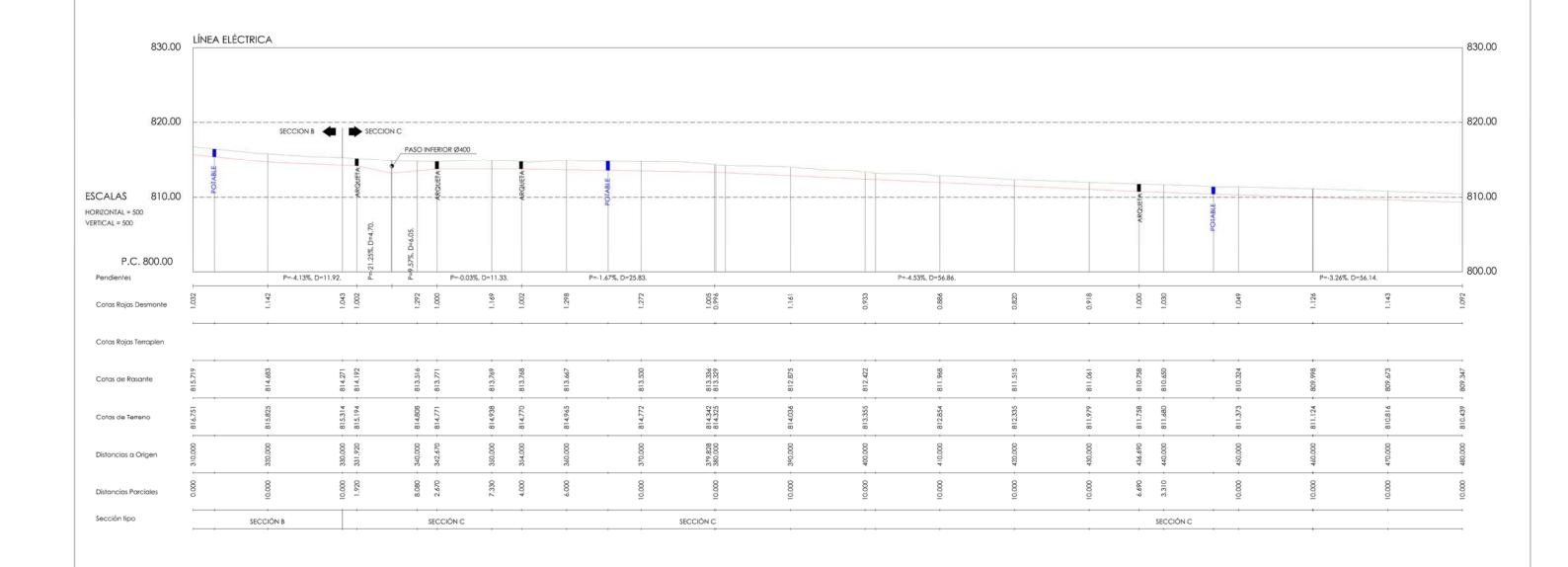





TÍTULO DEL PLANO:

TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL I.

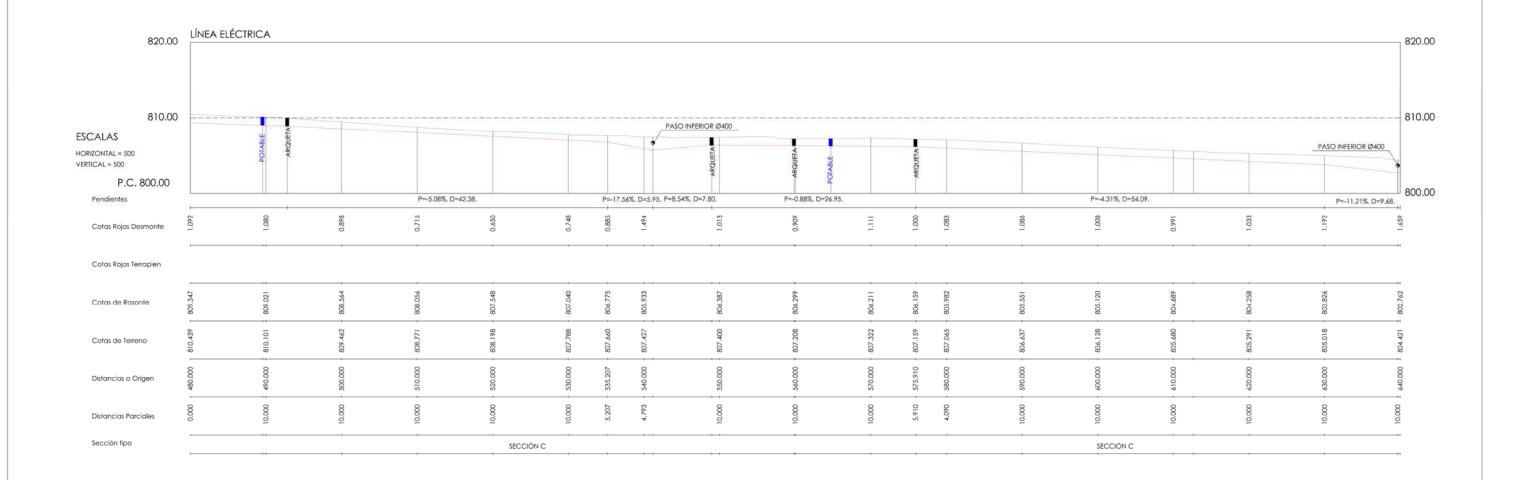
VOT JETA DE ANEA DE PROVECTOS DE SAMEAMENTO Y REUTI EXACIÓN AGO O MARIO ASSANDYA SANDAMA HOJA 1 DE 7


TITULO DEL PLANO:

TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL II.

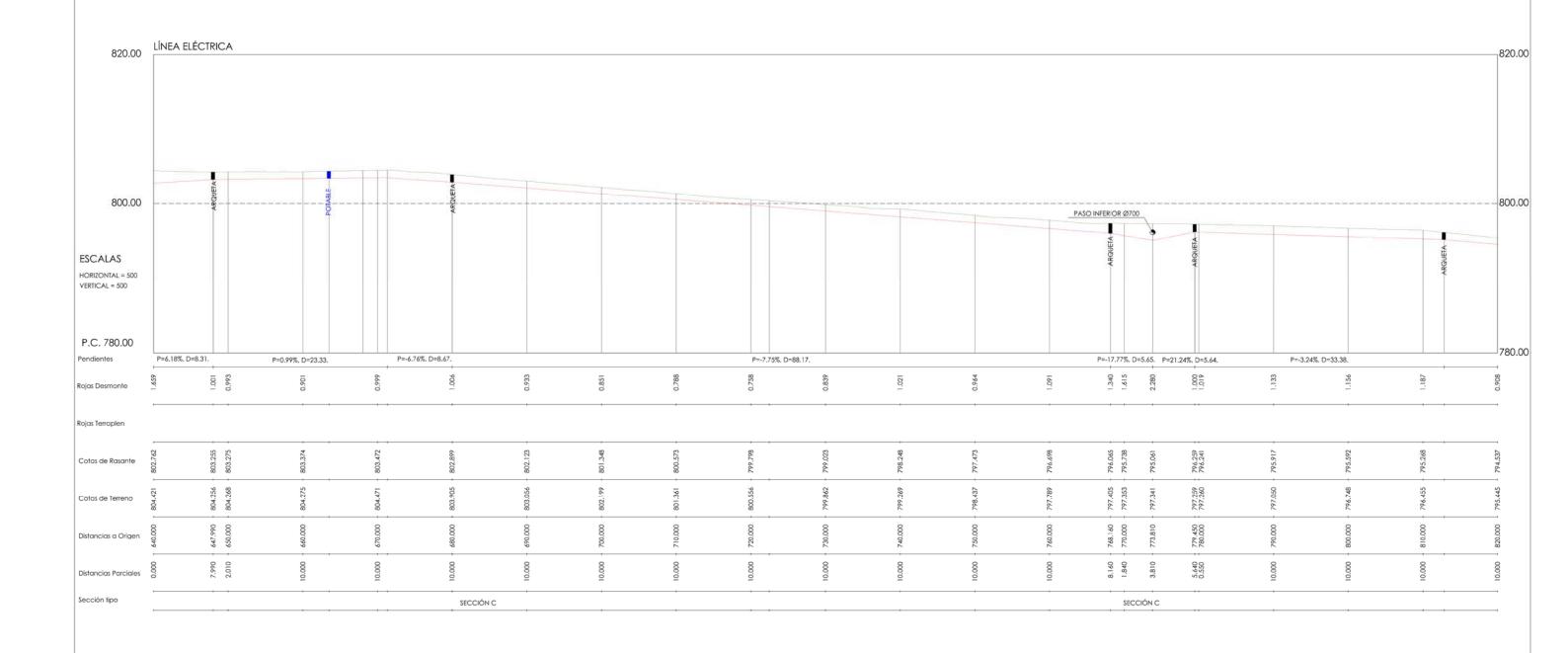
SEPTIE	MBRE DE 2016
nolter	REDACTORES PROYECTO EVA EMILICANETAR GONZÁLEZ MIGUEL ABAD CASTRELIA

ILO DEL PLANO:


TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL III.

nolter	REDACTORES PROYECTO EVA EMBOUNCIAR GONZALEZ	
	MIGUEL ABAD CASTIELLA	L

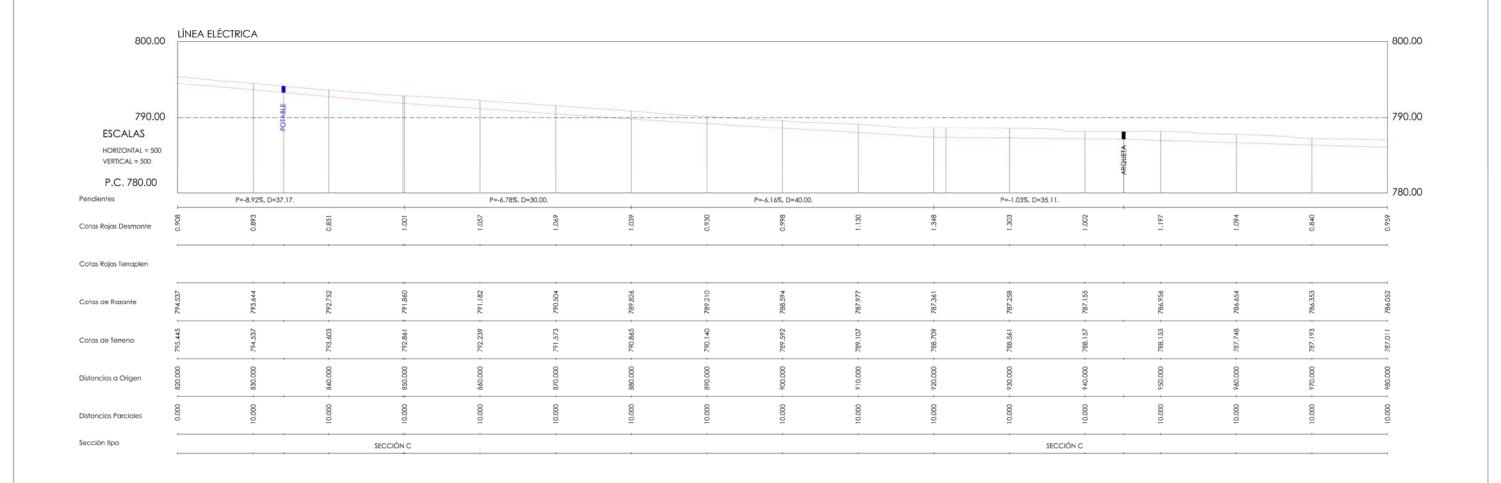
SEPTIEMBRE DE 2016


TITULO DEL PLANO:

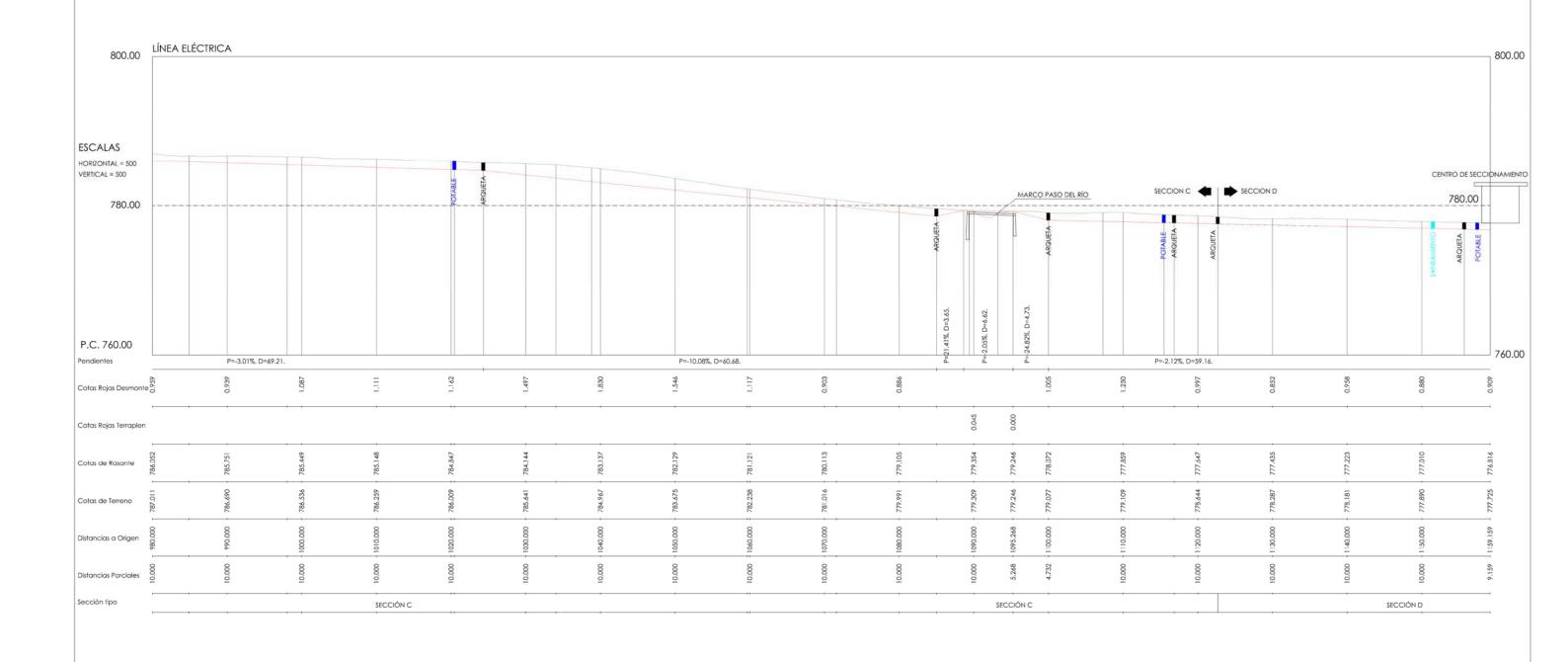
TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL IV.

CHA	SEPTIEMBRE DE 2016	
anc	REDACTORES PROYECTO EMBONICIAR GONZALEZ MIGUEL ASAG CASTIELLA	III.

PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA Y MEJORAS EN LA E.D.A.R. DE VALDEMAQUEDA


(T.M. DE VALDEMAQUEDA)

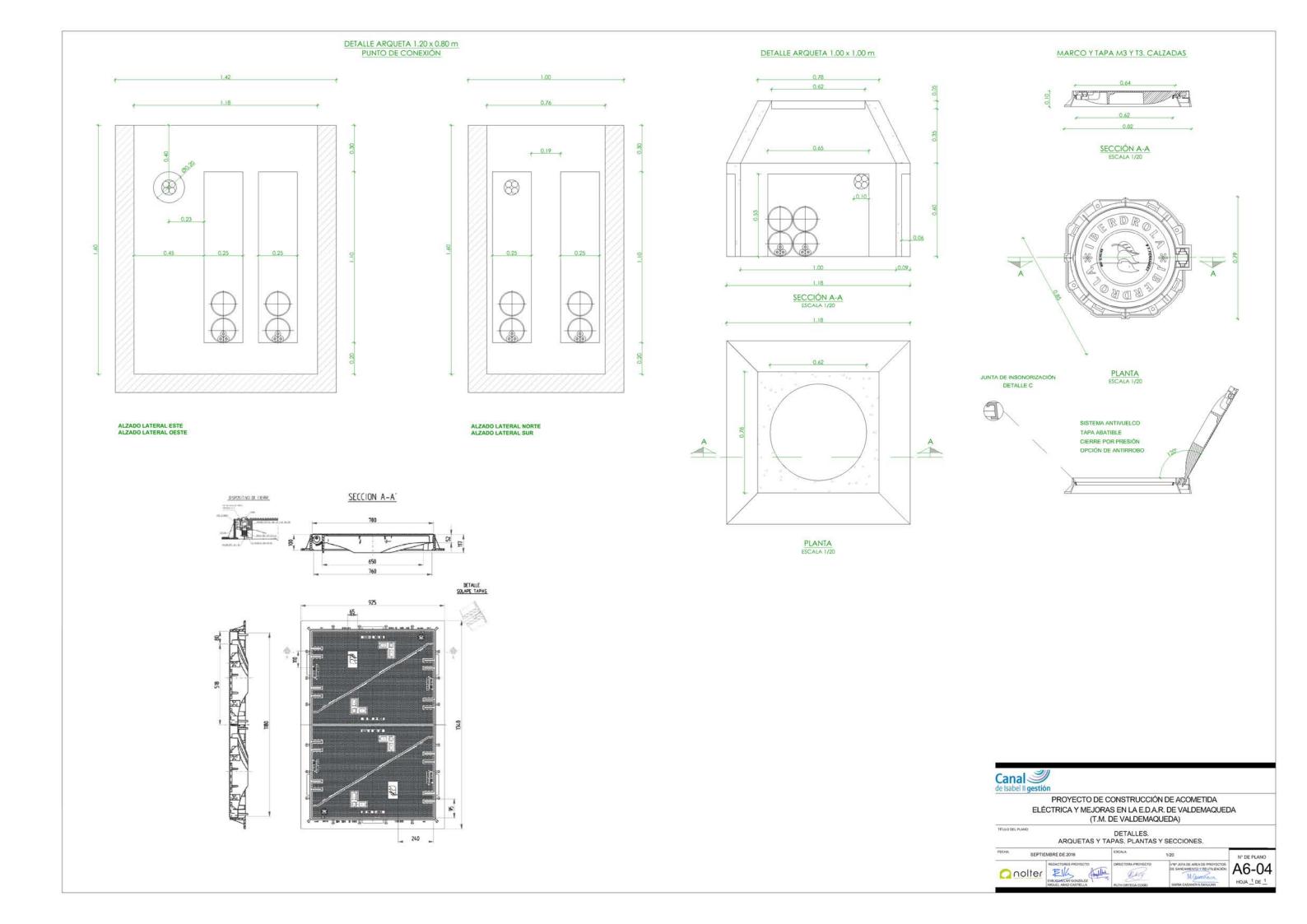
TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL V.

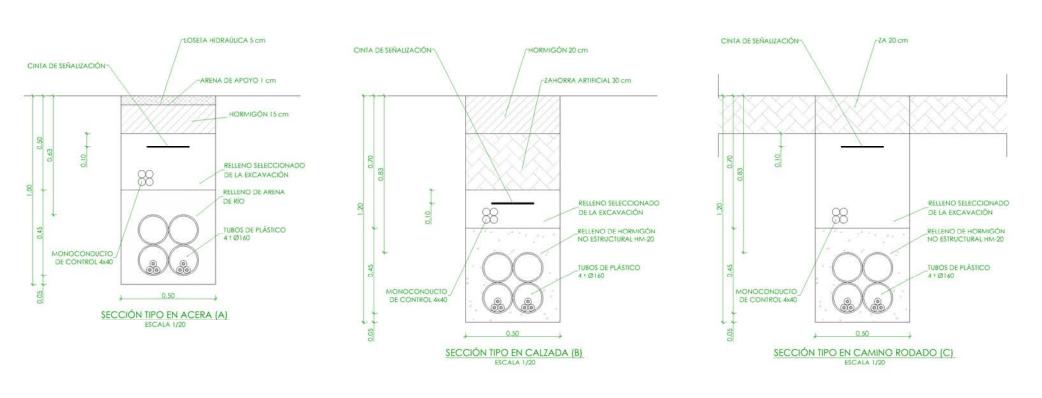

TITULO DEL PLANO:

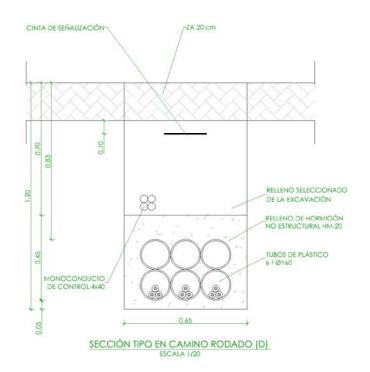
TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL VI.

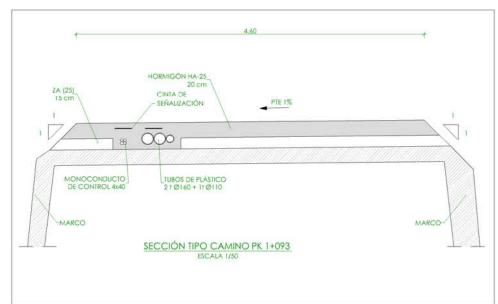
SEPTIE	MBRE DE 2016
nolter	REDACTORES PROYECTO EVA EMILICANETAR GONZÁLEZ MIGUEL ABAD CASTRELIA

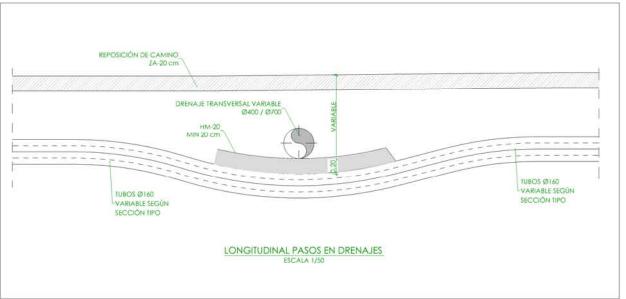
PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA Y MEJORAS EN LA E.D.A.R. DE VALDEMAQUEDA

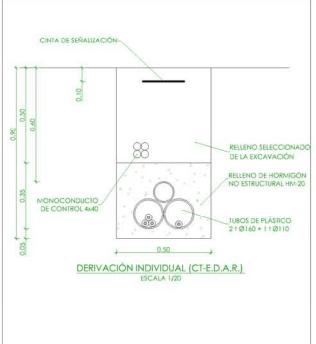

(T.M. DE VALDEMAQUEDA)

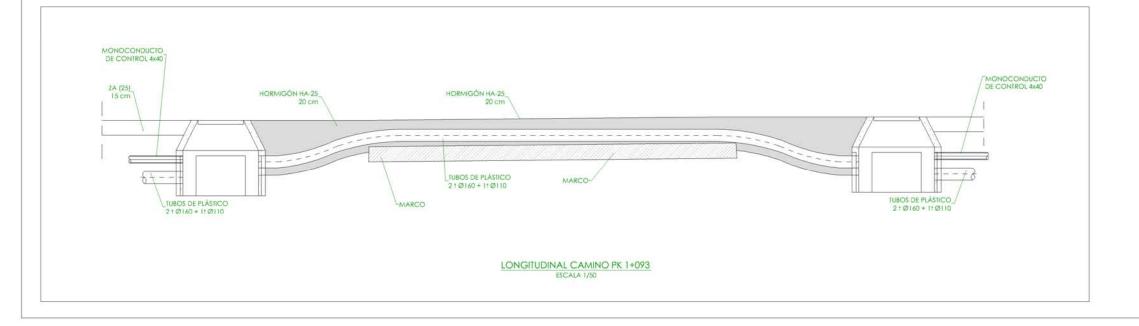

TRAZADO LÍNEA ELÉCTRICA. LONGITUDINAL VII.

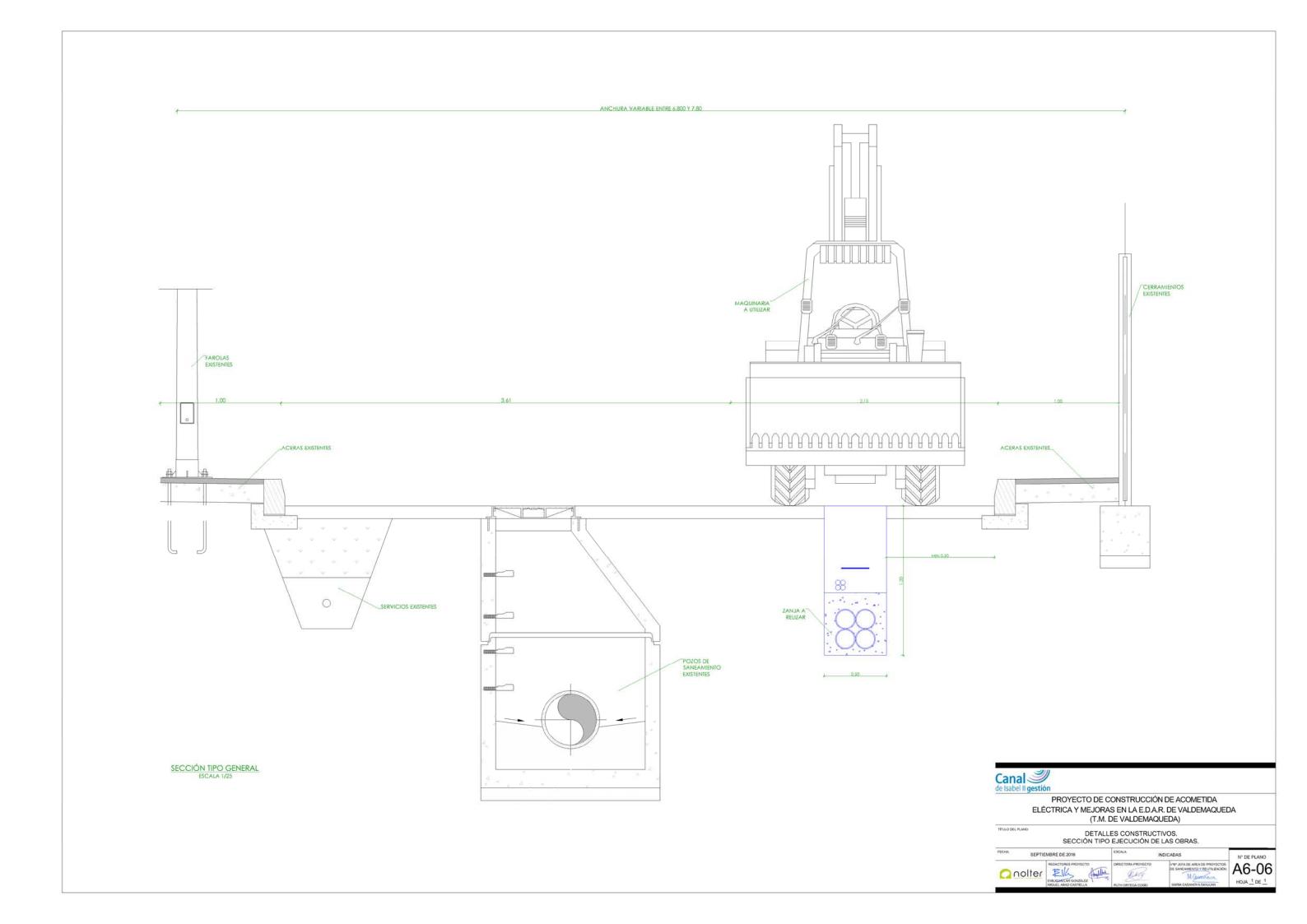

SEPTIEMBRE DE 2016 nolter EVA

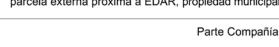


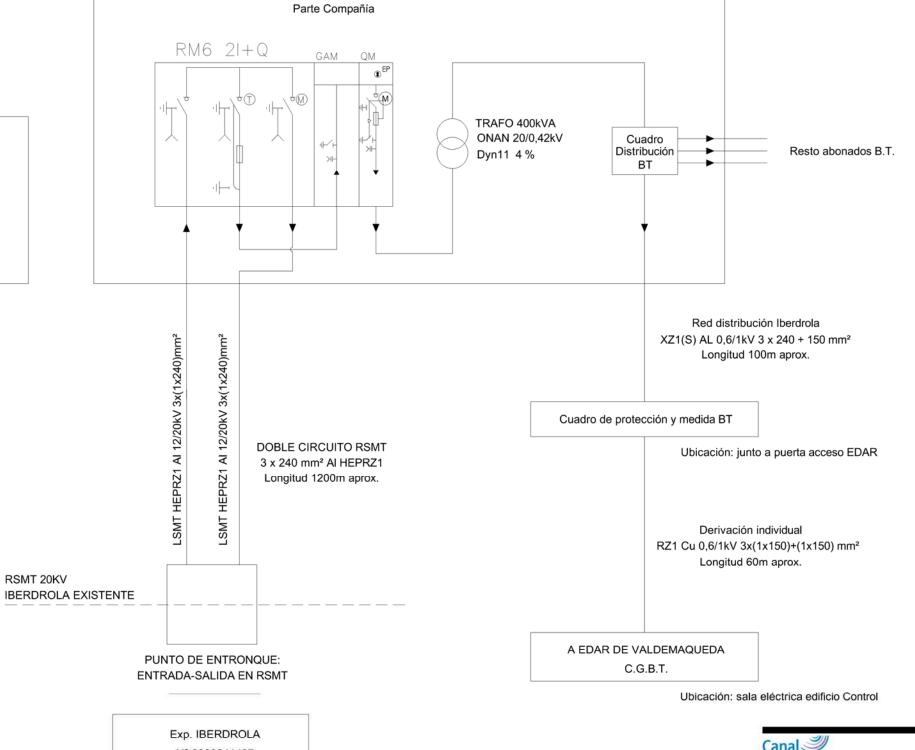

N° DE PLANO A6-03 HOJA 7 DE 7










CENTRO DE SECCIONAMIENTO Y TRANSFORMACIÓN 24kV 16kA 400A Referencias: Schneider RM6/SM6

Ubicación: Edificio prefabricado hormigón parcela externa próxima a EDAR, propiedad municipal

LEYENDA

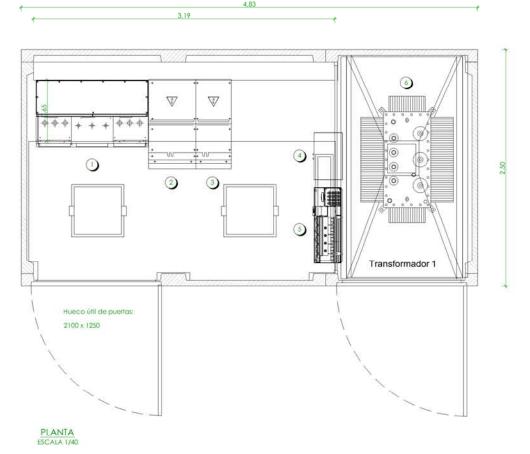
Enclavamiento interruptor Transformador MT Enclavamiento protección

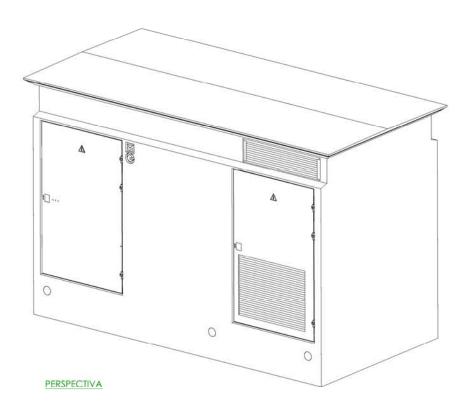
Nº 9033241437 Tensión de suministro: 20kV

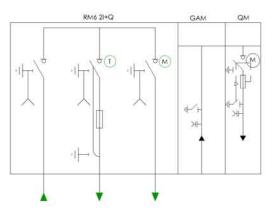
RSMT 20KV

PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA Y MEJORAS EN LA E.D.A.R. DE VALDEMAQUEDA (T.M. DE VALDEMAQUEDA)


ESQUEMA ELÉCTRICO. DISTRIBUCIÓN DE MEDIA TENSIÓN.







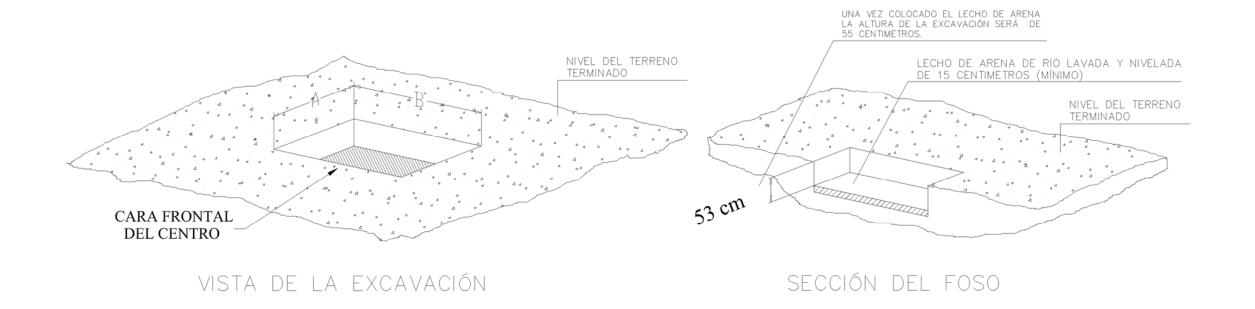
LEYENDA

- I.- COMPACTO DE CELDAS DE SECCIONAMIENTO.
- 2.- CELDA DE REMONTE.
- 3.- CELDA DE PROTECCIÓN RUPTOFUSIBLE.
- 4.- FUENTE DE ALIMENTACIÓN ASEGURADA.
- 5.- CUADRO DE DISTRUBUCIÓN BT.
- 6.-TRANSFORMADOR 400kVA.

PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA Y MEJORAS EN LA E.D.A.R. DE VALDEMAQUEDA (T.M. DE VALDEMAQUEDA)

TITULO DEL PLANO.

CENTRO DE SECCIONAMIENTO Y TRANSFORMACIÓN.


PLANTA, SECCIÓN Y DETALLES. DEFINICIÓN GEOMÉTRICA Y EQUIPOS ELÉCTRICOS.

nolter EM

DE BANKAMENTO Y REUTILIZACIÓN: A6-08

DIMENSIONES MINIMAS DE EXCAVACIÓN

	DIMENS (EN ME	
	А	В
EDIFICIO PREFABRICADO	3.50	5.50

SITUAR EL MÓDULO DE HORMIGÓN CENTRADO EN LA EXCAVACIÓN, DEJANDO 50 cm POR SU FRENTE Y SU PARTE POSTERIOR, PARA PERMITIR LA EXTRACCIÓN DE LOS ÚTILES DE IZADO.

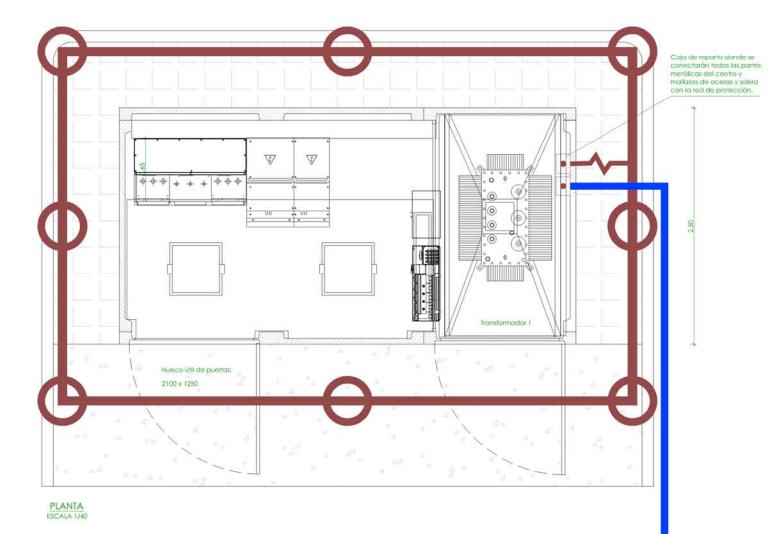
CONDICIONES QUE EL CLIENTE DEBERÁ CUMPLIR CON ANTERIORIDAD A LA INSTALACIÓN:

- Deberá existir un camino hasta la zona de ubicación del centro suficiente para el acceso de un camión—grúa de características: PMA=47 T; TARA=16 T; CARGA=31 T.
- La zona de ubicación del centro poseerá un espacio libre que permita una distancia entre el eje longitudinal o transversal del foso y el eje longitudinal del vehículo pesado más alejado de 7 m. si se emplea camión—grúa y de 14 m. si se utiliza góndola más grúa, de forma que no existan obstáculos que impidan la descarga de los materiales y el montaje del centro. (Ver catálogo. Para distancias menores, consultar)
- El lecho de arena de 150 milímetros de espesor mínimo, será por cuenta del cliente, y deberá estar realizado con anterioridad a la instalación del centro según se indica en el dibujo superior.

PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA Y MEJORAS EN LA E.D.A.R. DE VALDEMAQUEDA (T.M. DE VALDEMAQUEDA)

TITULO DEL PLANO:

CENTRO DE SECCIONAMIENTO Y TRANSFORMACIÓN. FOSO.



TIERRA DE PROTECCIÓN DEL CENTRO

Cobre desnudo y picas enterrados a 0.50 m de profundidad y separado 0.80 m del perimetro del edificio prefabricado.

4.83

TIERRA DE SERVICIO

Se tenderá por el fondo de la zanja de acometida eléctrica que alimenta el centro de transformación. El cobre desnudo y picas estarán en contacto intimo con el terreno, no pudiendo estar hormigonados.

CABLE AISLADO RV CU 50 mm³ DE LONGITUD NECESARIA PARA QUE LA SEPARACIÓN MINIMA ENTRE TIERRAS SEA DE 27 m

COBRE DESNUDO 50 mm² EN CONTACTO CON TERRENO

CONTACTO CON TERRENO

PICA DE COBRE

	RED DE TIERRAS
SIMBOLO	DESCRIPCIÓN
	RED DE TIERRAS COBRE DESNUDO 50 mm²
_	CABLE AISLADO RV Cu
0	PICA ACERO COBRIZADO 2m, Ø14 mm
~~	UNIÓN DE TIERRA
	CA IA DE PEPARIO

PROYECTO DE CONSTRUCCIÓN DE ACOMETIDA ELÉCTRICA Y MEJORAS EN LA E.D.A.R. DE VALDEMAQUEDA (T.M. DE VALDEMAQUEDA)

TITULO DEL PLANO:

CENTRO DE SECCIONAMIENTO Y TRANSFORMACIÓN. SISTEMAS DE PUESTA A TIERRA. PROTECCIÓN Y SERVICIO.

1/40

N° DE PLANO

N° DE PLANO

N° DE PLANO

A6-10

MOLETINE ROCCH

MOLETINE

DOCUMENTO Nº 3 PLIEGO DE PRESCRIPCIONES TÉCNICAS

DOCUMENTO Nº 3.- PLIEGO DE PRESCRIPCIONES TÉCNICAS INDICE

1	OBJETO DEL PLIEGO Y DESCRIPCIÓN DE LAS OBRAS	1
2	NORMATIVA APLICABLE	1
3 -	CONCLUSIONES	5

1.-OBJETO DEL PLIEGO Y DESCRIPCIÓN DE LAS OBRAS

Este Pliego de Prescripciones Técnicas tiene por objeto regular las obras del presente Anejo nº 6, que define las obras de construcción de una nueva acometida eléctrica que alimentará la EDAR de Valdemaqueda. Incluyen la extensión de la línea eléctrica subterránea, el centro de seccionamiento y transformación propiedad de la compañía distribuidora, así como la red de distribución hasta la EDAR.

2.-NORMATIVA APLICABLE

Para la redacción y posterior ejecución del Proyecto, además de la normativa oficial que específicamente determine el Director del Proyecto durante la realización de los trabajos y lo especificado en el presente Pliego, se tendrán en cuenta las siguientes Disposiciones, Normas y Reglamentos:

- Pliego de Cláusulas Administrativas Particulares del presente Concurso.
- Pliego de Prescripciones Técnicas Particulares.
- Condiciones Generales de Contratación de Canal de Isabel II Gestión.
- Ley 31/2007, de 30 de octubre, sobre procedimientos de contratación en los sectores del agua, la energía, los transportes y los servicios postales.
- Real Decreto Legislativo 3/2011, de 14 de Noviembre, por el que se aprueba el texto refundido de la Ley de Contratos del Sector Público.
- Ley 2/2002, de 19 de junio, de Evaluación Ambiental de la Comunidad de Madrid para la Protección de Medio Ambiente (B.O.C.M. Nº 154 de 1 de julio de 2002).
- Ley 2/2004, de 31 de mayo de Medidas Fiscales y Administrativas de la Comunidad de Madrid (B.O.C.M. nº 129 de 1 de junio de 2004).
- Ley 3/2008, de 29 de diciembre, de Medidas Fiscales y Administrativas de la Comunidad de Madrid (B.O.C.M. nº 310 de 30 de diciembre de 2008).
- Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación Ambiental de Proyectos.
- Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición.
- Normas UNE-EN-ISO.

- Normas ASTM y AWWA sobre tuberías y conducciones de agua.
- Instrucción del I.E.T.C.C. para tubos de hormigón armado o pretensado.
- Recomendaciones del I.E.T.C.C. para la fabricación, transporte y montaje de tubos de hormigón en masa.
- Instrucción 8.3.-IC Señalización de obras.
- Norma NLT-II. Ensayos de suelos N3.
- Instrucción de Hormigón Estructural (EHE-08). Aprobado por Real Decreto 1247/2008, de 18 de Julio, por el que se aprueba la instrucción de hormigón estructural (EHE-08).
- Instrucción para la recepción de cementos. (RC-08), aprobada por Real Decreto 956/2008, de 6 de junio.
- Real Decreto 314/2006, de 17 de Marzo, por el que se aprueba Código Técnico de la Edificación.
- Real Decreto 1371/2007, de 19 de Octubre, por el que se aprueba el documento básico "DB-HR Protección frente al ruido" del Código Técnico de la Edificación y se modifica el Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación.
- Norma de construcción sismorresistente: parte general y edificación (NCSR-02) aprobada por Real Decreto 997/2.002 de 27 de septiembre.
- Normas Tecnológicas de la Edificación.
- Real Decreto 2267/2004, de 3 de diciembre de 2004, por el que se aprueba el Reglamento de Seguridad contra Incendios en Establecimientos Industriales.
- Real Decreto 1942/1993, de 5 de noviembre, por el que se aprueba el reglamento de instalaciones de protección contra Incendios.
- Orden del 16 de abril 1998 sobre normas de procedimiento y desarrollo del RD 1942/1993 de 5 de noviembre por el que se aprueba el reglamento de instalaciones de protección contra incendios y se revisa el ANEXO I y apéndices del mismo.
- Orden 3619/2005 de la Comunidad de Madrid sobre inscripción de instalaciones de prevención y extinción de incendios en establecimientos industriales.

- Real Decreto 2060/2008, de 12 de diciembre, por el que se aprueba el Reglamento de equipos a presión y sus instrucciones técnicas complementarias.
- Reglamentos de redes y acometidas de combustibles gaseosos, aprobado por Orden de 18 de noviembre de 1.974.
- Real Decreto 919/2006, de 28 de julio, por el que se aprueba el Reglamento técnico de distribución y utilización de combustibles gaseosos y sus instrucciones técnicas complementarias ICG 01 a 11.
- Especificación técnica de acometidas de agua para consumo humano. Canal de Isabel II Gestión (Versión 2.011. ETC-2011).
- Normas Técnicas para la instalación de tritubo de polietileno en conducciones enterradas de comunicaciones. Canal de Isabel II Gestión (2.003).
- Real Decreto 223/2008, de 15 de febrero, por el que se aprueban el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias ITC-LAT 01 a 09).
- Real Decreto 842/2.002, de 2 de agosto, por el que se aprueba el Reglamento Electrotécnico para Baja Tensión y sus instrucciones técnicas complementarias. (BOE nº 224 de18-9-2.002).
- Real Decreto 1890/2008 de 14 de noviembre por el que se aprueba el Reglamento de Eficiencia Energética en instalaciones de alumbrado exterior, y sus instrucciones técnicas complementarias.
- Real Decreto 1955/2000 por el que se regula las actividades de transporte, distribución, comercialización, suministros y procedimientos de autorización de instalaciones de energía eléctrica (BOE nº 310 de 27-12-2.000).
- Real Decreto 3275/1.982, de 12 de noviembre, sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación. (BOE 1-12-1982).
- Orden de 6 de julio de 1.984, por la que se aprueban las Instrucciones Técnicas Complementarias del Reglamento sobre Condiciones Técnicas y Garantías de Seguridad en Centrales Eléctricas, Subestaciones y Centros de Transformación (BOE 1-8-1984) y Órdenes posteriores vigentes que las complementan, actualizan y/o modifican.

- Decreto 131/1997, de 16 de octubre, por el que se fijan los requisitos que se han de cumplir las actuaciones urbanísticas en relación con las infraestructuras eléctricas. (BOCM nº 255 de 27-10-1997).
- Decreto 40/1.998, de 5 de Marzo, por el que se establecen norma técnicas en instalaciones eléctricas para la protección de la avifauna (BOCM nº 71 de 25-3-1.998).
- Ley 31/1995, de 8 de Noviembre, de Prevención de Riesgos Laborales. (BOE nº 269 de 10-11-1.995), y los Reales Decretos que la complementan.
- Real Decreto 1627/1.997, de 24 de octubre, por el que se establecen las disposiciones mínimas de seguridad y salud en las obras de construcción. (BOE nº 257 de 25-10-1997).
- Real Decreto 614/2.001, de 8 de junio, sobre disposiciones mínimas para la protección de la salud y de los trabajadores frente al riesgo eléctrico (BOE nº 148 de 21-6-2.001).
- Ordenanza General de Seguridad e Higiene en el Trabajo. O.M. de 9 de marzo de 1.971.
- Ordenanza de Trabajo Laboral de la Construcción, Vidrio y Cerámica. O.M. de 28 de Agosto de 1.970.
- Real Decreto 1254/1999, de 16 de julio, por el que se aprueban medidas de control de los riesgos inherentes a los accidentes graves en los que intervengan sustancias peligrosas.
- Prescripciones Generales de Seguridad en Trabajos Eléctricos del Canal de Isabel
 II Gestión.
- Reglamento de los Servicios de Prevención, aprobado por Real Decreto 39/1997, de 17 de Enero.

Cuando en algunas Disposiciones, Normas o Reglamentos se haga referencia a otra que haya sido modificada o derogada, se entenderá que dicha modificación o derogación se extiende a aquella parte de la primera que haya sido afectada.

3.-CONCLUSIONES

Serán de aplicación las normas técnicas como se refleja en el Pliego de Bases Generales y Pliego de Prescripciones Técnicas de Canal de Isabel II Gestión S.A., siendo además de obligado cumplimiento las Normas Técnicas de la compañía distribuidora eléctrica.

Madrid, Septiembre de 2016

Los Ingenieros Autores del Proyecto

Emilio Villar González

Miguel Abad Castiella

El Director del Proyecto

V°B° Jefa de Área de Proyectos de Saneamiento y Reutilización

Ruth Ortega Cosío

María Casanova Sanjuan

DOCUMENTO Nº 4 PRESUPUESTO

MEDICIONES

1 <u>ACOMETIDA ELÉCTRICA Y CENTRO DE TRANSFORMACIÓN</u>

1.1 Obra civil

1.1.1 <u>Movimiento de tierras</u>

X001	660,000 m		co en la totalid nedios auxiliare	lad de la solera es.	de hormi-
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
Zanja tipo A	2,000	39,150			78,300
Zanja tipo B	2,000	290,850			581,700
			Tota	al	660,000
U01010120	34,958 m3	quier canto co		ormigón armad npresor, incluye obre perfil.	
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
Zanja tipo A	1,000	39,150	0,500	0,300	5,873
Zanja tipo B	1,000	290,850	0,500	0,200	29,085
			Tota	al	34,958
U01020140	653,642 m3	rreno medio (suelo con golp	nedios mecánio eo en el ensay medido sobre p	o SPT en-
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
Zanja tipo A	0,900	39,150	0,500	1,000	17,618
Zanja tipo B	0,900	290,850	0,500	1,200	157,059
Zanja tipo C	0,900	792,680	0,500	1,200	428,047
Zanja tipo D	0,900	36,470	0,650	1,100	23,468
Zona marco	-0,900	10,000	0,500	1,100	-4,950
Incremento pasos transversales	3,600	15,000	0,500	1,200	32,400
			Tota	al	653,642
U01020170	72,628 m3	rreno de tran	sición entre d	nedios mecánio uro y roca (res a 2 MPa), me	sistencia a
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
Zanja tipo A	0,100	39,150	0,500	1,000	1,958
Zanja tipo B	0,100	290,850	0,500	1,200	17,451
Zanja tipo C	0,100	792,680	0,500	1,200	47,561
Zanja tipo D	0,100	36,470	0,650	1,100	2,608
Zona marco	-0,100	10,000	0,500	1,100	-0,550
-	,	,	,	,	- ,

Descripción Incremento pasos transversales	<u>Unidades</u> 0,400	<u>Largo</u> 15,000	<u>Ancho</u> 0,500	<u>Alto</u> 1,200	<u>Parcial</u> 3,600
			Tota	al	72,628
U01030030	196,334 m3	mento CEM I locado a cual mos de 15 c	I/A-P 32,5, par quier profundiom, logrando u 90° a 180°, inc	D/B/20 fabricad ra asiento de tu dad con espes n ángulo de la luso compactad	ubería, co- ores míni- cama de
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
Zanja tipo A	1,000	39,150	0,500	0,500	9,788
Zanja tipo A	-4,000	39,150	0,020	0,500	-3,132
Zanja tipo B	1,000	290,850	0,500	0,500	72,713
, ,	-4,000	290,850	0,020	·	-23,268
Zanja tipo C	1,000	792,680	0,500	0,500	198,170
	-4,000	792,680	0,020		-63,414
Zanja tipo D	1,000	36,470	0,650	0,500	11,853
Zono moroo	-6,000 1,000	36,470	0,020	0.400	-4,376 2,000
Zona marco	-1,000	10,000	0,500	0,400	-2,000
			Tota	al	196,334
U01030070 Descripción	275,087 m3 <u>Unidades</u>	máximo 30 n ción, incluso	nm, procedent aportación, ex	es seleccionado es de la propi ktendido y com o P.N., medido <u>Alto</u>	a excava- npactación
Excavación	1,000	726,269			726,269
Hormigón	-1,000	292,524			-292,524
Zahorra	-1,000	126,637			-126,637
Solera	-1,000	32,021			-32,021
			Tota	al	275,087
U09012030 Descripción	126,637 m3 Unidades	con material 103104 y/o se taje mínimo dice de lajas i compactada, asiento, en ca	'no plástico", c egún normativa e partículas tri nferior a 35, pu incluso prepar apas de 20/30	nusos ZA (20) conforme norma a vigente, con u turadas del 75° uesta en obra e ación de la su cm de espeso os Angeles de	a UNE-EN un porcen- % y un ín- xtendida y perficie de or, medido
Zanja tipo B	1,000	290,850	0,500	0,300	43,628
Zanja tipo C	1,000	792,680	0,500	0,300	79,268
	.,000	. 02,000	0,000	0,200	. 0,200

Descripción Zanja tipo D Zona marco	<u>Unidades</u> 1,000 -1,000	<u>Largo</u> 36,470 10,000	<u>Ancho</u> 0,650 0,500	Alto 0,200 0,200	<u>Parcial</u> 4,741 -1,000
			Tot	al	126,637
U09035010	42,021 m3	vibrado y mo das, solera d miento de bo	Ideado en su e aceras, pista	ra de hormigón caso, en base s deportivas o p eras, con HM-20	de calza- aseos, ci-
Descripción Zanja tipo A Zanja tipo B Zona marco	<u>Unidades</u> 1,000 1,000 1,000	<u>Largo</u> 39,150 290,850 10,000	Ancho 0,500 0,500 5,000	Alto 0,150 0,200 0,200 ——————————————————————————	Parcial 2,936 29,085 10,000 42,021
U07030060	193,415 kg	alambres cor	rugados de ac	malla electroso ero B 500 T, in s, etc., según p	cluso cor-
<u>Descripción</u> Solera de hormi- gón	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	Alto	<u>Parcial</u>
Mallazo 15 x 15 x 4	1,000	290,850	0,500	1,330	193,415
			Tot	al	193,415
U09020150	19,575 m2	quier color, p sentada sobr	refabricada de e hormigón, in	losa hidráulica 5 cm de espesa cluso mortero a almente termina	or mínimo, de asiento
<u>Descripción</u>	<u>Unidades</u>	Largo	Ancho	<u>Alto</u>	Parcial
Zanja tipo A	1,000	39,150	0,500		19,575
			Tot	al 	19,575
U09020010	2,000 m	hormigón, red	cto o curvo, de y rejuntado, e	bordillo prefab 20x30 cm, inclu excavación y ho	ıso morte-
<u>Descripción</u>	<u>Unidades</u>	Largo	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
	2,000	1,000			2,000
			Tot	al 	2,000

<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
1.1.2 <u>(</u>	Conducciones y arque	<u>tas</u>			
U01020140	4,860 m3	rreno medio (suelo con golp	nedios mecánico seo en el ensayo medido sobre pe	SPT en-
<u>Descripción</u> Arqueta de cone xión	<u>Unidades</u> - 1,000	<u>Largo</u> 1,800	<u>Ancho</u> 1,500	<u>Alto</u> 1,800	<u>Parcial</u> 4,860
			Tot	al	4,860
U01030070	2,250 m3	máximo 30 r ción, incluso	nm, proceden aportación, e	os seleccionados tes de la propia xtendido y com 6 P.N., medido s	excava- pactación
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
Excavación	1,000	4,860			4,860
Hormigón	-1,000	1,450	1,000	1,800	-2,610
			Tot	al 	2,250
U07010010	0,145 m3	HL-150/C/TM	, para capa	a de hormigón de de limpieza, co in EHE vigente.	
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	Ancho	Alto	Parcial
Arqueta de cone xión	1,000	1,450	1,000	0,100	0,145
			Tot	al	0,145
U07020010	0,980 m2		ano en cimenta ocado a cuald	al aciones, soleras	, pozos y
U07020010 Descripción	0,980 m2 <u>U</u> nidades	arquetas, col	ano en cimenta ocado a cuald	aciones, soleras	, pozos y
	<u>Unidades</u>	arquetas, col desencofrado	ano en ciment ocado a cualo y limpieza.	aciones, soleras Juier profundidad	, pozos y d, incluso
<u>Descripción</u>	<u>Unidades</u>	arquetas, col desencofrado <u>Largo</u>	ano en ciment ocado a cualo y limpieza.	aciones, soleras _l uier profundidad <u>Alto</u>	, pozos y d, incluso <u>Parcial</u>
<u>Descripción</u> Arqueta de cone	<u>Unidades</u> 2,000	arquetas, col desencofrado <u>Largo</u>	ano en cimenta ocado a cualo y limpieza. <u>Ancho</u> 1,000	aciones, soleras juier profundidad Alto 0,200	, pozos y d, incluso <u>Parcial</u> 0,580

U07020030	15,680 m2	Encofrado plano para elementos horizontales de estructura (losas, etc.) con paneles metálicos o fenólicos, con calidad de acabado cara vista, para trabajos hasta 3 m de altura, incluso molduras y berenjenos, velas, puntales, cimbras y andamiaje, desencofrado y limpieza.				
<u>Descripción</u> Arqueta de cone- xión	<u>Unidades</u> 4,000	<u>Largo</u> 1,450	<u>Ancho</u>	<u>Alto</u> 1,600	<u>Parcial</u> 9,280	
Alon	4,000		1,000	1,600	6,400	
			Tot	al	15,680	
U07020070	1,450 m2	tura (muros, e con calidad o partir de 3 m molduras y b	etc.) con pane de acabado ca de altura y ha	entos verticales o les metálicos o tra vista, para t sta 5 m de altur las, puntales, o impieza.	fenólicos, rabajos a a, incluso	
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>	
Arqueta de cone- xión	1,000	1,450	1,000		1,450	
			Tota	al	1,450	
U07010170	0,290 m3	HA-30/IIa, IIb árido según p estructura (cir	o H, consister proyecto, en e mentaciones, s	de hormigón pa ncia y tamaño m lementos horizo soleras, vigas, e	áximo de	
		gón, compact gún EHE vige	tación, vibrado	cluso bombeo o , curado y acab	de hormi-	
<u>Descripción</u>	<u>Unidades</u>		tación, vibrado		de hormi-	
<u>Descripción</u> Arqueta de cone- xión	<u>Unidades</u> 1,000	gún EHE vige	tación, vibrado ente.	, curado y acab	de hormi- bado. Se-	
Arqueta de cone-		gún EHE vige <u>Largo</u>	tación, vibrado ente. <u>Ancho</u> 1,000	, curado y acab <u>Alto</u>	de hormi- pado. Se- <u>Parcial</u>	
Arqueta de cone-		Suministro y I HA-30/IIa, IIb árido según p tructura (muraltura, incluso	Ancho 1,000 Tota puesta en obra o H, consister proyecto, en ele os, pilares, etc o bombeo de	, curado y acab <u>Alto</u> 0,200	Parcial 0,290 0,290 ara armar áximo de es de es- cualquier bactación,	
Arqueta de cone- xión	1,000	Suministro y I HA-30/IIa, IIb árido según p tructura (muraltura, incluso	Ancho 1,000 Tota puesta en obra o H, consister proyecto, en ele os, pilares, etc o bombeo de	Alto 0,200 al de hormigón pancia y tamaño mementos vertical c.), colocado a hormigón, comp	Parcial 0,290 0,290 ara armar áximo de es de es- cualquier bactación,	
Arqueta de cone- xión U07010180	1,000 1,858 m3	gún EHE vige Largo 1,450 Suministro y I HA-30/IIa, IIb árido según p tructura (muraltura, incluso vibrado, curado	Ancho Ancho 1,000 Tota puesta en obra o H, consister oroyecto, en ele os, pilares, etc o bombeo de do y acabado.	Alto 0,200 al de hormigón pancia y tamaño mementos vertical colocado a hormigón, composegún EHE vige	Parcial 0,290 0,290 ara armar áximo de es de es- cualquier bactación, ente.	

<u>Descripción</u>	<u>Unidades</u> 1,000	<u>Largo</u> 1,450	<u>Ancho</u> 1,000	<u>Alto</u> 0,200	<u>Parcial</u> 0,290	
		Total 1,				
U07030050	227,580 kg	Suministro y colocación de acero para armaduras en barras corrugadas B 500 S, incluso cortado, doblado y recortes, según peso teórico.				
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>	
Soleras	1,000	80,000	0,290		23,200	
Muros y losas	1,000	110,000	1,858		204,380	
			Tot	al	227,580	
U07040050	4,900 m		a el sellado d	izo de seccio e juntas inclus		
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	Ancho	<u>Alto</u>	Parcial	
Arqueta de cone- xión	2,000	1,450			2,900	
	2,000		1,000		2,000	
			Tot	al	4,900	
X003	4.709,540 m		160 en canali a. Según E.T. 3	zaciones eléct 3121.	ricas, colo-	
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>	
Zanja tipo A	4,000	39,150			156,600	
Zanja tipo B	4,000	290,850			1.163,400	
Zanja tipo C Zanja tipo D	4,000 6,000	792,680 36,470			3.170,720 218,820	
			Tot	 al	4.709,540	
X004	1.159,150 m	Cuatritubo Ø4	40 incluso sepa	aradores coloca	ado	
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>	
Zanja tipo A	1,000	39,150			39,150	
Zanja tipo B	1,000	290,850			290,850	
Zanja tipo C	1,000	792,680			792,680	
Zanja tipo D	1,000	36,470			36,470	
			Tot	al	1.159,150	
		_				
U01030330	1.159,150 m			gún normas o le Isabel II Ges		

Descripción Zanja tipo A Zanja tipo B	<u>Unidades</u> 1,000 1,000	<u>Largo</u> 39,150 290,850	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u> 39,150 290,850
Zanja tipo C Zanja tipo D	1,000 1,000	792,680 36,470			792,680 36,470
			Tota	al 	1.159,150
U10040080	24,000 ud	de baja ten	hormigón prefab sión de 1,00x1, almente instalac	00x1,00 m co	
<u>Descripción</u>	<u>Unidades</u> 24,000	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u> 24,000
			Tota	al	24,000
1.1.3	Servicios afectados				
U15020010	1,000 ud	cavación po	del servicio afe r medios manu ción del servicio	ales, limpieza	
<u>Descripción</u>	<u>Unidades</u> 1,000	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	Parcial 1,000
			Tota	al	1,000
U15020020	2,000 ud	vación por r	del servicio afe nedios manuale del servicio afec	s, limpieza, s	
<u>Descripción</u>	<u>Unidades</u> 2,000	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	Parcial 2,000
			Tota	al	2,000
U15020030	6,000 ud	DN<=500, e	del servicio af xcavación por n ción y protección	nedios manua	ıles, limpie-
<u>Descripción</u>	<u>Unidades</u> 6,000	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	Parcial 6,000
			Tota	al	6,000
U15020050	15,000 ud	DN<=500, e	del servicio af xcavación por n sión y protección	nedios manua	iles, limpie-

<u>Descripción</u>	<u>Unidades</u> 15,000	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u> 15,000
			Total		15,000
U15020080	5,000 ud	cavación por	del servicio afecta medios manuale ión del servicio afe	s, limpieza, se	
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
	5,000			-	5,000
			Total		5,000
X013	1,000 ud		e canalización elé aterial auxiliar, co		
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
	1,000				1,000
			Total	·	1,000
X014	2,000 ud		e canalización de y material auxilia ado.		
<u>Descripción</u>	<u>Unidades</u> 2,000	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	Parcial 2,000
		Total 2,00			
X015	6,000 ud	Reposición de saneamiento afectada, incluso piezas y material auxiliar, comprobado y totalmente terminado.			
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
	6,000				6,000
			Total		6,000
X016	8,000 ud		e abastecimiento I auxiliar, comprob		
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
	0,500	16,000			8,000
			Total		8,000

1.1.4	<u>Varios</u>					
U02011020		20,000 m	Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 400 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.			
<u>Descripción</u> Reposición		<u>Unidades</u> 2,000	<u>Largo</u> 10,000	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u> 20,000
				Tot	al	20,000
U02011030		10,000 m	mado, confo 127916 y/o s 500 mm de d	colocación de rme a norma egún normativ iámetro, para s al de junta elas	UNE-EN 19 a vigente, Cla saneamiento,	916 / UNE ase 135, de incluso par-
<u>Descripción</u> Reposición		<u>Unidades</u> 1,000	<u>Largo</u> 10,000	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u> 10,000
				Tot	al	10,000
U02011050		10,000 m	mado, confo 127916 y/o s 800 mm de d	colocación de rme a norma egún normativ iámetro, para s al de junta elas	UNE-EN 19 a vigente, Cla saneamiento,	916 / UNE ase 135, de incluso par-
<u>Descripción</u> Reposición		<u>Unidades</u> 1,000	<u>Largo</u> 10,000	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u> 10,000
				Tot	al	10,000
1.2 1.2.1		s eléctricos ida media tens	ión			
1.2.1.1		compañía				
84011240		7.200,000 MI		ninio tipo HEF sección de cai		
		<u>Unidades</u> 2,000	<u>Largo</u> 1.200,000	<u>Ancho</u> 3,000	<u>Alto</u>	<u>Parcial</u> 7.200,000
				Tot	al	7.200,000

	,	
89000002	1,000 Ud	Entronque de las instalaciones de extensión nuevas con la red de distribución existente (a realizar por empresa distribuidora)
89000009	1,000 Ud	Partida alzada a justificar para petición de derechos de potencia: extensión, acceso y enganche, incluso tasas aplicables por la Cía. Suministradora de Energía, para una potencia de 30 kW.
1.2.2	Centro de seccionamio	ento y transformación
82202403	1,000 Ud	Ud. Edificio de hormigón compacto , de dimensiones exteriores 4.830 x 2.500 y altura útil 2.535 mm., incluyendo su transporte y montaje. También incluye excavación de un foso de dimensiones 3.500 x 5.500 mm. para alojar el edificio prefabricado compacto, con un lecho de arena nivelada de 150 mm. (quedando una profundidad de foso libre de 530 mm.) y acondicionamiento perimetral una vez montado. Totalemente instalado.
82012417	1,000 Ud	Ud. Compacto de celdas gama RM6, configuración (2L+1P), resistencia al arco interno IAC AFL 16kA 0.5 seg., con cajón de automatización Iberdrola (STAR), para dos funciones de línea 400 A motorizadas y una de protección, equipadas con bobina de apertura y fusibles, según memoria, con capotes cubrebornas e indicadores de tensión, instalado.
82152418	1,000 Ud	Ud. Cabina de remonte de cables con seccionador p.a.t. SGAM16, con indicador presencia de tensión y mando CC manual, instalados.
82132417	1,000 Ud	Ud. Cabina ruptofusible SQM16M, con interruptor- seccionador en SF6 con bobina de apertura, con mando Cl1 motorizado, fusibles con señalización fu- sión, seccionador p.a.t., indicadores presencia de tensión y enclavamientos instalados. Según E.T. 3204
82100003	2,000 Ud	Ud. Juego de 3 conectores apantallados en "T" roscados M16 400 A para celda RM6. Según E.T. 3222
82100004	1,000 Ud	Ud. Juego de 3 conectores apantallados enchufables rectos lisos 200 A para celda RM6. Según E.T. 3222
U10020190	1,000 ud	Transformador de potencia de 400 KVA, conforme a norma UNE 21.428 y/o según normativa vigente, para servicio interior, refrigeración natural en baño de aceite, cuba con aletas llenado integral, tensión primaria 20.000 +/- 2,5%, +/- 5% V, tensión secundaria 420/240 V en vacío, con termómetro de esfera con 2 contactos y aguja de máxima.
82710001	1,000 Ud	Ud. Complemento de 3 pasatapas para conexión a bornas enchufables en MT en la tapa del transformador.
82700001	1,000 Ud	Ud. Juego de puentes III de cables AT unipolares de aislamiento seco HEPRZ1, aislamiento 12/20 kV, de 50 mm2 en Al con sus correspondientes elementos de conexión.
82700002	1,000 ud	Ud. Juego de 3 conectores apantallados enchufables rectos lisos 200 A para transformador.

82710002	1,000 ud	Ud. Juego de puentes de cables BT unipolares de aislamiento seco 0.6/1 kV de Al, de 2x240mm2 para las fases y de 1x240mm2 para el neutro y demás características según memoria.				
82540001	1,000 ud	Ud. Termómetro para protección térmica de transfor- mador, incorporado en el mismo, y sus conexiones a la alimentación y al elemento disparador de la protec- ción correspondiente, debidamente protegidas contra sobreintensidades, instalados.				
82900010	1,000 ud	Ud. Cuadro de distribución baja tensión modelo JLJCBT0AS51600 de 5 salidas, con seccionador vertical 3P+N, con acometida superior y acometida auxiliar.				
81490005	1,000 Ud	Ud. de tierras exteriores código 5/62 Unesa, incluyendo 6 picas de 2,00 m. de longitud, cable de cobre desnudo, cable de cobre aislado de 0,6/1kV y elementos de conexión, instalado, según se describe en proyecto. Ud. instalada y funcionando.				
81490006	1,000 Ud	Ud. de tierras exteriores código 5/82 Unesa, incluyendo 8 picas de 2,00 m. de longitud, cable de cobre desnudo, cable de cobre aislado de 0,6/1kV y elementos de conexión, instalado, según se describe en proyecto. Ud. instalada y funcionando.				
81490007	1,000 Ud	Ud. tierras interiores para poner en continuidad con las tierras exteriores, formado por cable de 50mm2 de Cu desnudo para la tierra de protección y aislado para la de servicio, con sus conexiones y cajas de seccionamiento, instalado, según memoria. Ud. instalada y funcionando.				
82520001	2,000 Ud	Punto de luz incandescente adecuado para proporcionar nivel de iluminación suficiente para la revisión y manejo del centro, incluidos sus elementos de mando y protección, instalado.				
82520002	1,000 Ud	Punto de luz de emergencia autónomo para la señalización de los accesos al centro, instalado en las puertas de acceso al centro de transformacion. Ud. totalmente instalada y funcionando.				
82500000	1,000 Ud	Juego de elementos de seguridad para el Centro compuesto por extintor de CO2 de eficacia 89B, banqueta aislante, juego de guantes y placas de señalización de peligro y primeros auxilios.				
<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>	
centro secciona- miento	1,000				1,000	
			Tota	l	1,000	
				-		

89000001 1,000 Ud Medición de tensiones de paso y contacto, resisten-

cia de tierras de protección y neutro realizado por un

organismo de control autorizado.

Descripción Unidades Largo **Ancho** <u>Alto</u> Parcial 1.000 centro secciona-1.000

miento

Total ... 1,000

82811020

1,000 Ud

Ud. Fuente de alimentación . Características: 110 Vac e intensidad de salida 20A. Batería de alimentacion Ni-Cd de 105 Ah. Incluso dos módulos (1+1) rectficadores enchufables en caliente y aparatos de medida de tensión e intensidad en la entrada y salida. Incluso fusibles de batería y automático de salida hasta 32A. Incluye unidad de control. Alimentación de equipos de protección y maniobra en centro de transformación. Ud. instalada y funcionando. Según E.T. 3224

1.2.3 Instalaciones de enlace baja tensión

81480045

1,000 Ud

Conjunto individual trifasico de hasta 100kW para instalación intemperie de tipo empotrado ubicado en el interior de un nicho. El nicho cumplirá normativa de Compañía Distribuidora (MT 2.80.12) con un hueco interior para la caja de dimensiones 70x30x100cm (anchoxprofundoxalto) y se le acometerá por la parte inferior con dos tubos de 160mm. Modelo CPM2-D/E4-MBP o similar. Ud. completa incluyendo: Panel troquelado para un contador trifásico electrónico, una mirilla de policarbonato transparente para la lectura del contador, placa precintable, aislante y transparente de policarbonato, un bloque de bornes de ocho elementos para verificación y cambio de aparatos de medida directa, según NI 76.84.04, panel para montaje de bases BUC, neutro amovible, bornes y regleta de comprobación, base de neutro amovible de 160A con borne bimetálico de hasta 50 mm2 de capacidad. bases unipolares cerradas BUC tamaño 00 de 160A, según NI 76.01.02, cuatro bloques de bornes fijos del tipo BFT-25, según NI 76.84.02.

Ud. totalmente montada de acuerda a la normativa del REBT y la Compañía distribuidora, incluyendo nicho según especificaciones de Compañía

84000240

75,000 ml

Conductor XZ1(S) AL 0,6/1kV de 3x(1x240mm2)+1x150mm2 aluminio. Tendido en canalización preparada al efecto y conexionado. Totalmente terminado y funcionando.

<u>Descripción</u>	<u>Unidades</u>	<u>Largo</u>	<u>Ancho</u>	<u>Alto</u>	<u>Parcial</u>
conexión CT con cuadro de protec- ción y medida	1,000	75,000			75,000
			Total		75,000

CUADRO DE PRECIOS

Ud

<u>Código</u> <u>UM</u> <u>Descripción</u> <u>Importe en letras</u> <u>Importe en cifras</u>

81480045

Conjunto individual trifasico de hasta 100kW para instalación intemperie de tipo empotrado ubicado en el interior de un nicho. El nicho cumplirá normativa de Compañía Distribuidora (MT 2.80.12) con un hueco interior para la caja de dimensiones 70x30x100cm (anchoxprofundoxalto) y se le acometerá por la parte inferior con dos tubos de 160mm, Modelo CPM2-D/E4-MBP o similar. Ud. completa incluyendo: Panel troquelado para un contador trifásico electrónico, una mirilla de policarbonato transparente para la lectura del contador, placa precintable, aislante y transparente de policarbonato, un bloque de bornes de ocho elementos para verificación y cambio de aparatos de medida directa, según NI 76.84.04, panel para montaje de bases BUC, neutro amovible, bornes y regleta de comprobación, base de neutro amovible de 160A con borne bimetálico de hasta 50 mm2 de capacidad, bases unipolares cerradas BUC tamaño 00 de 160A, según NI 76.01.02, cuatro bloques de bornes fijos del tipo BFT-25, según NI 76.84.02. Ud. totalmente montada de acuerda a la normativa del REBT y la Compañía distribuidora, incluyendo nicho según especificaciones de Compañía

Mil ciento sesenta y cinco euros con cincuenta cents.

1.165,50

81490005

Ud. de tierras exteriores código 5/62 Unesa, incluyendo 6 picas de 2,00 m. de longitud, cable de cobre desnudo, cable de cobre aislado de 0,6/1kV y elementos de conexión, instalado, según se describe en proyecto. Ud. instalada y funcionando.

Novecientos cincuenta y tres euros con treinta y tres cents.

953,33

<u>Código</u> 81490006	UM Ud	Descripción Ud. de tierras exteriores código 5/82 Unesa, incluyendo 8 picas de 2,00 m. de longitud, cable de cobre desnudo, cable de cobre aislado de 0,6/1kV y elementos de conexión, instalado, según se describe en proyecto. Ud. instalada y funcionando.		Importe en cifras
			Mil ciento veinte euros con cuarenta y siete cents.	1.120,47
81490007	Ud	Ud. tierras interiores para poner en continuidad con las tierras exteriores, formado por cable de 50mm2 de Cu desnudo para la tierra de protección y aislado para la de servicio, con sus conexiones y cajas de seccionamiento, instalado, según memoria. Ud. instalada y funcionando.		
			Mil veintinueve euros.	1.029,00
82012417	Ud	Ud. Compacto de celdas gama RM6, configuración (2L+1P), resistencia al arco interno IAC AFL 16kA 0.5 seg., con cajón de automatización Iberdrola (STAR), para dos funciones de línea 400 A motorizadas y una de protección, equipadas con bobina de apertura y fusibles, según memoria, con capotes cubrebornas e indicadores de tensión, instalado.		
			Diecisiete mil nove- cientos diecisiete eu- ros con once cents.	17.917,11
82100003	Ud	Ud. Juego de 3 conectores apantallados en "T" roscados M16 400 A para celda RM6. Según E.T. 3222		
			Setecientos treinta y dos euros con noventa y nueve cents.	732,99
82100004	Ud	Ud. Juego de 3 conectores apantallados enchufables rectos lisos 200 A para celda RM6. Según E.T. 3222		
			Trescientos setenta y cinco euros.	375,00

<u>Código</u>	<u>UM</u>	<u>Descripción</u>	Importe en letras	Importe en cifras
82132417	Ud	Ud. Cabina ruptofusible SQM16M, con interruptor-seccionador en SF6 con bobina de apertura, con mando Cl1 motorizado, fusibles con señalización fusión, seccionador p.a.t., indicadores presencia de tensión y enclavamientos instalados. Según E.T. 3204		
			Tres mil seiscientos sesenta y nueve euros con un cent.	3.669,01
82152418	Ud	Ud. Cabina de remonte de cables con seccionador p.a.t. SGAM16, con indicador presencia de tensión y mando CC manual, instalados.		
			Mil novecientos cua- renta y cinco euros con un cent.	1.945,01
82202403	Ud	Ud. Edificio de hormigón compacto, de dimensiones exteriores 4.830 x 2.500 y altura útil 2.535 mm., incluyendo su transporte y montaje. También incluye excavación de un foso de dimensiones 3.500 x 5.500 mm. para alojar el edificio prefabricado compacto, con un lecho de arena nivelada de 150 mm. (quedando una profundidad de foso libre de 530 mm.) y acondicionamiento perimetral una vez montado. Totalemente instalado.		
			Once mil trescientos trece euros con seis cents.	11.313,06
82500000	Ud	Juego de elementos de seguridad para el Centro compuesto por ex- tintor de CO2 de eficacia 89B, banqueta aislante, juego de guan- tes y placas de señalización de pe- ligro y primeros auxilios.		
			Trescientos setenta y dos euros con noventa y dos cents.	372,92
82520001	Ud	Punto de luz incandescente ade- cuado para proporcionar nivel de iluminación suficiente para la revi- sión y manejo del centro, incluidos sus elementos de mando y protec- ción, instalado.		

<u>Código</u>	<u>UM</u>	<u>Descripción</u>	Importe en letras Trescientos cuarenta y siete euros.	Importe en cifras 347,00
82520002	Ud	Punto de luz de emergencia autónomo para la señalización de los accesos al centro, instalado en las puertas de acceso al centro de transformacion. Ud. totalmente instalada y funcionando.		347,00
			Trescientos cuarenta y siete euros.	347,00
82540001	ud	Ud. Termómetro para protección térmica de transformador, incorporado en el mismo, y sus conexiones a la alimentación y al elemento disparador de la protección correspondiente, debidamente protegidas contra sobreintensidades, instalados.		
			Ciento quince euros con nueve cents.	115,09
82700001	Ud	Ud. Juego de puentes III de cables AT unipolares de aislamiento seco HEPRZ1, aislamiento 12/20 kV, de 50 mm2 en Al con sus correspondientes elementos de conexión.		
			Quinientos catorce euros.	514,00
82700002	ud	Ud. Juego de 3 conectores apantallados enchufables rectos lisos 200 A para transformador.		
			Doscientos once euros con noventa y nueve cents.	211,99
82710001	Ud	Ud. Complemento de 3 pasatapas para conexión a bornas enchufables en MT en la tapa del transformador.		
			Treinta y cinco euros.	35,00
82710002	ud	Ud. Juego de puentes de cables BT unipolares de aislamiento seco 0.6/1 kV de Al, de 2x240mm2 para las fases y de 1x240mm2 para el neutro y demás características según memoria.		
			Mil novecientos cua- renta y ocho euros con un cent.	1.948,01

<u>Código</u>	<u>UM</u>	<u>Descripción</u>	Importe en letras	Importe en cifras
82811020	Ud	Ud. Fuente de alimentación . Características: 110 Vac e intensidad de salida 20A. Batería de alimentacion Ni-Cd de 105 Ah. Incluso dos módulos (1+1) rectficadores enchufables en caliente y aparatos de medida de tensión e intensidad en la entrada y salida. Incluso fusibles de batería y automático de salida hasta 32A. Incluye unidad de control. Alimentación de equipos de protección y maniobra en centro de transformación. Ud. instalada y funcionando. Según E.T. 3224		
			Dos mil setecientos cincuenta y seis euros con setenta cents.	2.756,70
82900010	ud	Ud. Cuadro de distribución baja tensión modelo JLJCBT0AS51600 de 5 salidas, con seccionador vertical 3P+N, con acometida superior y acometida auxiliar.		
			Tres mil quinientos un euros con dos cents.	3.501,02
84000240	ml	Conductor XZ1(S) AL 0,6/1kV de s e c c i ó n 3x(1x240mm2)+1x150mm2 aluminio. Tendido en canalización preparada al efecto y conexionado. Totalmente terminado y funcionando.		
			Veintiún euros con setenta y seis cents.	21,76
84011240	MI	Cable de aluminio tipo HEPRZ1 AL 12/20 KV de 1 x 240 mm2 de sección de características de acuerdo a E.T. 3012		
			Veintidós euros con noventa y seis cents.	22,96
8900001	Ud	Medición de tensiones de paso y contacto, resistencia de tierras de protección y neutro realizado por un organismo de control autorizado.		
			Mil ciento once euros con noventa y siete cents.	1.111,97

<u>Código</u> 8900002	<u>UM</u> Ud	<u>Descripción</u> Entronque de las instalaciones de	Importe en letras	Importe en cifras
		extensión nuevas con la red de distribución existente (a realizar por empresa distribuidora)		
			Dos mil novecientos cuarenta y un euros con cuatro cents.	2.941,04
89000009	Ud	Partida alzada a justificar para petición de derechos de potencia: extensión, acceso y enganche, incluso tasas aplicables por la Cía. Suministradora de Energía, para una potencia de 30 kW.		
			Mil sesenta euros con cuarenta y nueve cents.	1.060,49
U01010120	m3	Demolición de solera de hormigón armado de cualquier canto con martillo compresor, incluyendo retirada de escombros, medido sobre perfil.		
			Setenta y dos euros con cincuenta y siete cents.	72,57
U01020140	m3	Excavación en zanja, por medios mecánicos, en terreno medio (suelo con golpeo en el ensayo SPT entre 10 y 30 golpes / 30 cm), medido sobre perfil.		
			Once euros con treinta y siete cents.	11,37
U01020170	m3	Excavación en zanja, por medios mecánicos, en terreno de transición entre duro y roca (resistencia a comprensión simple inferior a 2 MPa), medido sobre perfil.		
			Dieciséis euros con diecinueve cents.	16,19
U01030030	m3	Hormigón en masa HL 150/B/20 fabricado con cemento CEM II/A-P 32,5, para asiento de tubería, colocado a cualquier profundidad con espesores mínimos de 15 cm, logrando un ángulo de la cama de apoyo entre 90° a 180°, incluso compactación, curado y acabado.		
			Setenta y ocho euros con dieciocho cents.	78,18

<u>Código</u> U01030070	<u>UM</u> m3	Descripción Relleno de zanjas con suelos seleccionados, tamaño máximo 30 mm, procedentes de la propia excavación, incluso aportación, extendido y compactación hasta una densidad del 95% P.N., medido sobre perfil.		Importe en cifras
			Seis euros con noventa y cuatro cents.	6,94
U01030330	m	Banda de señalización, según nor- mas o especificaciones técnicas del Canal de Isabel II Gestión vi- gentes.		
			Veinticinco cents.	0,25
U02011020	m	Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 400 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.		
			Treinta y cuatro euros con cuarenta y tres cents.	34,43
U02011030	m	Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 500 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.		
			Cuarenta y nueve euros con cuarenta y un cents.	49,41
U02011050	m	Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 800 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.		
			Ciento veinticuatro euros con doce cents.	124,12

<u>Código</u> U07010010	<u>UM</u> m3	Descripción Suministro y puesta en obra de hormigón de limpieza HL-150/C/TM, para capa de limpieza, colocado a cualquier profundidad. Según EHE vigente.		Importe en cifras
		3	Setenta y siete euros con tres cents.	77,03
U07010170	m3	Suministro y puesta en obra de hormigón para armar HA-30/IIa, IIb o H, consistencia y tamaño máximo de árido según proyecto, en elementos horizontales de estructura (cimentaciones, soleras, vigas, etc.), colocado a cualquier altura, incluso bombeo de hormigón, compactación, vibrado, curado y acabado. Según EHE vigente.		
			Ciento ocho euros con cincuenta y nueve cents.	108,59
U07010180	m3	Suministro y puesta en obra de hormigón para armar HA-30/IIa, IIb o H, consistencia y tamaño máximo de árido según proyecto, en elementos verticales de estructura (muros, pilares, etc.), colocado a cualquier altura, incluso bombeo de hormigón, compactación, vibrado, curado y acabado. Según EHE vigente.		
			Ciento quince euros con setenta y nueve cents.	115,79
U07020010	m2	Encofrado plano en cimentaciones, soleras, pozos y arquetas, colocado a cualquier profundidad, incluso desencofrado y limpieza.		
			Veinte euros con sesenta y cuatro cents.	20,64
U07020030	m2	Encofrado plano para elementos horizontales de estructura (losas, etc.) con paneles metálicos o fenólicos, con calidad de acabado cara vista, para trabajos hasta 3 m de altura, incluso molduras y berenjenos, velas, puntales, cimbras y andamiaje, desencofrado y limpieza.		
			Veintitrés euros.	23,00

<u>Código</u> U07020070	UM m2	Descripción Encofrado plano para elementos verticales de estructura (muros, etc.) con paneles metálicos o fenólicos, con calidad de acabado cara vista, para trabajos a partir de 3 m de altura y hasta 5 m de altura, incluso molduras y berenjenos, velas, puntales, cimbras y andamiaje, desencofrado y limpieza.		Importe en cifras
			Veintiún euros con noventa y siete cents.	21,97
U07030050	kg	Suministro y colocación de acero para armaduras en barras corrugadas B 500 S, incluso cortado, doblado y recortes, según peso teórico.		
			Un euro con dos cents.	1,02
U07030060	kg	Suministro y colocación de malla electrosoldada con alambres corrugados de acero B 500 T, incluso cortado, colocación, despuntes, etc., según peso teórico.		
			Un euro con cincuenta y dos cents.	1,52
U07040050	m	Perfil hidroexpansivo macizo de sección mínima 20x5 mm para el sellado de juntas incluso fijación y medios axiliares.		
			Ocho euros con treinta y ocho cents.	8,38
U09012030	m3	Base de zahorra artificial, husos ZA (20) / ZA (25), con material "no plástico", conforme norma UNE-EN 103104 y/o según normativa vigente, con un porcentaje mínimo de partículas trituradas del 75% y un índice de lajas inferior a 35, puesta en obra extendida y compactada, incluso preparación de la superficie de asiento, en capas de 20/30 cm de espesor, medido sobre perfil. Desgaste de los Angeles de los áridos inferior a 30.		
			Veintiún euros con tre- ce cents.	21,13

<u>Código</u> U09020010	<u>UМ</u> m	Descripción Suministro y colocación de bordillo prefabricado de hormigón, recto o curvo, de 20x30 cm, incluso mortero de asiento y rejuntado, excavación y hormigón de solera HM-20 y refuerzo.		Importe en cifras
			Dieciséis euros con treinta cents.	16,30
U09020150	m2	Suministro y colocación de losa hidráulica de cualquier color, prefabricada de 5 cm de espesor mínimo, sentada sobre hormigón, incluso mortero de asiento y relleno de juntas. Obra totalmente terminada.		
			Veinticinco euros con veinticuatro cents.	25,24
U09035010	m3	Suministro y puesta en obra de hormigón en masa, vibrado y moldeado en su caso, en base de calzadas, solera de aceras, pistas deportivas o paseos, cimiento de bordillos y escaleras, con HM-20, árido 40 mm y consistencia plástica.		
			Noventa euros con catorce cents.	90,14
U10020190	ud	Transformador de potencia de 400 KVA, conforme a norma UNE 21.428 y/o según normativa vigente, para servicio interior, refrigeración natural en baño de aceite, cuba con aletas llenado integral, tensión primaria 20.000 +/- 2,5%, +/-5% V, tensión secundaria 420/240 V en vacío, con termómetro de esfera con 2 contactos y aguja de máxima.		
			Nueve mil trescientos setenta y nueve euros con veintiocho cents.	9.379,28
U10040080	ud	Arqueta de hormigón prefabricada para canalización de baja tensión de 1,00x1,00x1,00 m con tapa de hormigón totalmente instalada.		
			Doscientos euros con cincuenta y seis cents.	200,56

<u>Código</u> U15020010	<u>UM</u> ud	Descripción Localización del servicio afectado de electricidad, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.		Importe en cifras
			Trescientos euros.	300,00
U15020020	ud	Localización del servicio afectado de telefonía, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.		400,00
			Cuatrocientos euros.	400,00
U15020030	ud	Localización del servicio afectado de alcantarillado DN<=500, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.		
			Trescientos euros.	300,00
U15020050	ud	Localización del servicio afectado de agua potable DN<=500, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.		
			Trescientos euros.	300,00
U15020080	ud	Localización del servicio afectado de acometida, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.		
			Ciento cincuenta euros.	150,00
X001	m	Corte con disco en la totalidad de la solera de hormigón incluso me- dios auxiliares.		
			Dos euros con treinta y nueve cents.	2,39
X003	m	Tubo PVC Ø160 en canalizaciones eléctricas, colocado en zanja. Según E.T. 3121.		
			Diez euros con veinti- dós cents.	10,22
X004	m	Cuatritubo Ø40 incluso separadores colocado		
			Tres euros con ochenta y un cents.	3,81

<u>Código</u>	<u>UM</u>	<u>Descripción</u>	Importe en letras	Importe en cifras
X013	ud	Reposición de canalización eléctrica afectada, incluso piezas y material auxiliar, comprobado y totalmente terminado.	•	
			Quinientos ocho euros con noventa y cuatro cents.	508,94
X014	ud	Reposición de canalización de te- lefónica afectada, incluso piezas y material auxiliar, comprobado y to- talmente terminado.	1	
			Seiscientos dieciocho euros con sesenta y cinco cents.	618,65
X015	ud	Reposición de saneamiento afec- tada, incluso piezas y material au- xiliar, comprobado y totalmente terminado.	•	
			Ochocientos cuatro euros con setenta y un cents.	804,71

Importe en letras Importe en cifras Código <u>UM</u> Descripción de abastecimiento X016 ud Reposición afectada, incluso piezas y material auxiliar, comprobado y totalmente terminado. Setecientos veintitrés euros con ochenta v nueve cents. 723,89

Madrid, Septiembre de 2016

INGENIEROS AUTORES DEL PROYECTO

Fdo.: Emilio Villar González

Fdo. Miguel Abad Castiella

DIRECTORA DEL PROYECTO

V° B° JEFA DE ÁREA DE PROYECTOS DE SANEAMIENTO Y REUTILIZACIÓN

Fdo.: Ruth Ortega Cosío

Fdo.: María Casanova Sanjuán

NOTA: A aquellas unidades no contempladas en el presente Cuadro de Precios y que puedan aparecer durante el desarrollo de las obras se aplicarán los precios recogidos en el Cuadro de Precios del Canal de Isabel II Gestión vigente.

PRESUPUESTOS PARCIALES

1 ACOMETIDA ELÉCTRICA Y CENTRO DE TRANSFORMACIÓN

1.1 Obra civil

1.1.1 Movimiento de tierras

<u>Código</u>	<u>Medición</u>	<u>UM</u>	Unidad de Obra	<u>Precio</u>	<u>Importe</u>
X001	660,000	m	Corte con disco en la totalidad de la solera de hormigón incluso medios auxiliares.	2,39	1.577,40
U01010120	34,958	m3	Demolición de solera de hormigón armado de cualquier canto con martillo compresor, incluyendo retirada de escombros, medido sobre perfil.	72,57	2.536,90
U01020140	653,642	m3	Excavación en zanja, por medios mecánicos, en terreno medio (suelo con golpeo en el ensayo SPT entre 10 y 30 golpes / 30 cm), medido sobre perfil.	11,37	7.431,91
U01020170	72,628	m3	Excavación en zanja, por medios mecánicos, en terreno de transición entre duro y roca (resistencia a comprensión simple inferior a 2 MPa), medido sobre perfil.	16,19	1.175,85
U01030030	196,334	m3	Hormigón en masa HL 150/B/20 fabricado con cemento CEM II/A-P 32,5, para asiento de tubería, colocado a cualquier profundidad con espesores mínimos de 15 cm, logrando un ángulo de la cama de apoyo entre 90° a 180°, incluso compactación, curado y acabado.	78,18	15.349,39
U01030070	275,087	m3	Relleno de zanjas con suelos se- leccionados, tamaño máximo 30 mm, procedentes de la propia ex- cavación, incluso aportación, ex- tendido y compactación hasta una densidad del 95% P.N., medido sobre perfil.	6,94	1.909,10
U09012030	126,637	m3	Base de zahorra artificial, husos ZA (20) / ZA (25), con material "no plástico", conforme norma UNE-EN 103104 y/o según normativa vigente, con un porcentaje mínimo de partículas trituradas del 75% y un índice de lajas inferior a 35, puesta en obra extendida y compactada, incluso preparación	21,13	2.675,84

<u>Código</u>	<u>Medición</u>	<u>UM</u>	Unidad de Obra de la superficie de asiento, en ca- pas de 20/30 cm de espesor, me- dido sobre perfil. Desgaste de los Angeles de los áridos inferior a 30.	<u>Precio</u>	<u>Importe</u>
U09035010	42,021	m3	Suministro y puesta en obra de hormigón en masa, vibrado y moldeado en su caso, en base de calzadas, solera de aceras, pistas deportivas o paseos, cimiento de bordillos y escaleras, con HM-20, árido 40 mm y consistencia plástica.	90,14	3.787,77
U07030060	193,415	kg	Suministro y colocación de malla electrosoldada con alambres corrugados de acero B 500 T, incluso cortado, colocación, despuntes, etc., según peso teórico.	1,52	293,99
U09020150	19,575	m2	Suministro y colocación de losa hidráulica de cualquier color, prefabricada de 5 cm de espesor mínimo, sentada sobre hormigón, incluso mortero de asiento y relleno de juntas. Obra totalmente terminada.	25,24	494,07
U09020010	2,000	m	Suministro y colocación de bordillo prefabricado de hormigón, recto o curvo, de 20x30 cm, incluso mortero de asiento y rejuntado, excavación y hormigón de solera HM-20 y refuerzo.	16,30	32,60
				Total Cap.	37.264,82

1.1.2 Conducciones y arquetas

<u>Código</u> U01020140	<u>Medición</u> 4,860	<u>UM</u> m3	Unidad de Obra Excavación en zanja, por medios mecánicos, en terreno medio (suelo con golpeo en el ensayo SPT entre 10 y 30 golpes / 30 cm), medido sobre perfil.	<u>Precio</u> 11,37	<u>Importe</u> 55,26
U01030070	2,250	m3	Relleno de zanjas con suelos se- leccionados, tamaño máximo 30 mm, procedentes de la propia ex- cavación, incluso aportación, ex- tendido y compactación hasta una densidad del 95% P.N., medido sobre perfil.	6,94	15,62
U07010010	0,145	m3	Suministro y puesta en obra de hormigón de limpieza HL- 150/C/TM, para capa de limpieza, colocado a cualquier profundidad. Según EHE vigente.	77,03	11,17
U07020010	0,980	m2	Encofrado plano en cimentaciones, soleras, pozos y arquetas, colocado a cualquier profundidad, incluso desencofrado y limpieza.	20,64	20,23
U07020030	15,680	m2	Encofrado plano para elementos horizontales de estructura (losas, etc.) con paneles metálicos o fenólicos, con calidad de acabado cara vista, para trabajos hasta 3 m de altura, incluso molduras y berenjenos, velas, puntales, cimbras y andamiaje, desencofrado y limpieza.	23,00	360,64
U07020070	1,450	m2	Encofrado plano para elementos verticales de estructura (muros, etc.) con paneles metálicos o fenólicos, con calidad de acabado cara vista, para trabajos a partir de 3 m de altura y hasta 5 m de altura, incluso molduras y berenjenos, velas, puntales, cimbras y andamiaje, desencofrado y limpieza.	21,97	31,86
U07010170	0,290	m3	Suministro y puesta en obra de hormigón para armar HA-30/IIa, IIb o H, consistencia y tamaño máximo de árido según proyecto, en elementos horizontales de estructura (cimentaciones, soleras,	108,59	31,49

<u>Código</u>	<u>Medición</u>	<u>UM</u>	Unidad de Obra	<u>Precio</u>	Importe
			vigas, etc.), colocado a cualquier altura, incluso bombeo de hormigón, compactación, vibrado, curado y acabado. Según EHE vigente.		
U07010180	1,858	m3	Suministro y puesta en obra de hormigón para armar HA-30/IIa, IIb o H, consistencia y tamaño máximo de árido según proyecto, en elementos verticales de estructura (muros, pilares, etc.), colocado a cualquier altura, incluso bombeo de hormigón, compactación, vibrado, curado y acabado. Según EHE vigente.		215,14
U07030050	227,580	kg	Suministro y colocación de acero para armaduras en barras corrugadas B 500 S, incluso cortado, doblado y recortes, según peso teórico.		232,13
U07040050	4,900	m	Perfil hidroexpansivo macizo de sección mínima 20x5 mm para el sellado de juntas incluso fijación y medios axiliares.		41,06
X003	4.709,540	m	Tubo PVC Ø160 en canalizaciones eléctricas, colocado en zanja. Según E.T. 3121.	,	48.131,50
X004	1.159,150	m	Cuatritubo Ø40 incluso separadores colocado	3,81	4.416,36
U01030330	1.159,150	m	Banda de señalización, según normas o especificaciones técni- cas del Canal de Isabel II Gestión vigentes.		289,79
U10040080	24,000	ud	Arqueta de hormigón prefabricada para canalización de baja tensión de 1,00x1,00x1,00 m con tapa de hormigón totalmente instalada.	200,56	4.813,44
				Total Cap.	58.665,69

1.1.3 Servicios afectados

<u>Código</u> U15020010	Medición 1,000	<u>UM</u> ud	Unidad de Obra Localización del servicio afectado de electricidad, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.	<u>Precio</u> 300,00	<u>Importe</u> 300,00
U15020020	2,000	ud	Localización del servicio afectado de telefonía, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.	400,00	800,00
U15020030	6,000	ud	Localización del servicio afectado de alcantarillado DN<=500, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.	300,00	1.800,00
U15020050	15,000	ud	Localización del servicio afectado de agua potable DN<=500, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.	300,00	4.500,00
U15020080	5,000	ud	Localización del servicio afectado de acometida, excavación por medios manuales, limpieza, señalización y protección del servicio afectado.	150,00	750,00
X013	1,000	ud	Reposición de canalización eléctrica afectada, incluso piezas y material auxiliar, comprobado y totalmente terminado.	508,94	508,94
X014	2,000	ud	Reposición de canalización de te- lefónica afectada, incluso piezas y material auxiliar, comprobado y totalmente terminado.	618,65	1.237,30
X015	6,000	ud	Reposición de saneamiento afec- tada, incluso piezas y material au- xiliar, comprobado y totalmente terminado.	804,71	4.828,26
X016	8,000	ud	Reposición de abastecimiento afectada, incluso piezas y material auxiliar, comprobado y totalmente terminado.	723,89	5.791,12
				Total Cap.	20.515,62

1.1.4 **Varios**

<u>Código</u> U02011020	<u>Medición</u> 20,000	<u>UM</u> m	Unidad de Obra Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 400 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.		recio 34,43	<u>Importe</u> 688,60
U02011030	10,000	m	Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 500 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.	2	49,41	494,10
U02011050	10,000	m	Suministro y colocación de tubería de hormigón armado, conforme a norma UNE-EN 1916 / UNE 127916 y/o según normativa vigente, Clase 135, de 800 mm de diámetro, para saneamiento, incluso parte proporcional de junta elastomérica y pruebas.	12	24,12	1.241,20
				Total C	_ ap.	2.423,90

1.2 Equipos eléctricos

1.2.1 Acometida media tensión

1.2.1.1 Tramo compañía

Código 84011240	<u>Medición</u> 7.200,000	<u>UM</u> MI	Unidad de Obra Cable de aluminio tipo HEPRZ1 AL 12/20 KV de 1 x 240 mm2 de sección de características de acuerdo a E.T. 3012	<u>Precio</u> 22,96	<u>Importe</u> 165.312,00
89000002	1,000	Ud	Entronque de las instalaciones de extensión nuevas con la red de distribución existente (a realizar por empresa distribuidora)	2.941,04	2.941,04
89000009	1,000	Ud	Partida alzada a justificar para petición de derechos de potencia: extensión, acceso y enganche, incluso tasas aplicables por la Cía. Suministradora de Energía, para una potencia de 30 kW.	1.060,49	1.060,49

Total Cap. 169.313,53

1.2.2 Centro de seccionamiento y transformación

<u>Código</u> 82202403	<u>Medición</u> 1,000	UM Ud	Unidad de Obra Ud. Edificio de hormigón compacto, de dimensiones exteriores 4.830 x 2.500 y altura útil 2.535 mm., incluyendo su transporte y montaje. También incluye excavación de un foso de dimensiones 3.500 x 5.500 mm. para alojar el edificio prefabricado compacto, con un lecho de arena nivelada de 150 mm. (quedando una profundidad de foso libre de 530 mm.) y acondicionamiento perimetral una vez montado. Totalemente instalado.	<u>Precio</u> 11.313,06	<u>Importe</u> 11.313,06
82012417	1,000	Ud	Ud. Compacto de celdas gama RM6, configuración (2L+1P), resistencia al arco interno IAC AFL 16kA 0.5 seg., con cajón de automatización Iberdrola (STAR), para dos funciones de línea 400 A motorizadas y una de protección, equipadas con bobina de apertura y fusibles, según memoria, con capotes cubrebornas e indicadores de tensión, instalado.	17.917,11	17.917,11
82152418	1,000	Ud	Ud. Cabina de remonte de cables con seccionador p.a.t. SGAM16, con indicador presencia de tensión y mando CC manual, instalados.	1.945,01	1.945,01
82132417	1,000	Ud	Ud. Cabina ruptofusible SQM16M, con interruptor-seccionador en SF6 con bobina de apertura, con mando Cl1 motorizado, fusibles con señalización fusión, seccionador p.a.t., indicadores presencia de tensión y enclavamientos instalados. Según E.T. 3204	3.669,01	3.669,01
82100003	2,000	Ud	Ud. Juego de 3 conectores apantallados en "T" roscados M16 400 A para celda RM6. Según E.T. 3222	732,99	1.465,98
82100004	1,000	Ud	Ud. Juego de 3 conectores apantallados enchufables rectos lisos 200 A para celda RM6. Según E.T. 3222	375,00	375,00

<u>Código</u> U10020190	<u>Medición</u> 1,000	<u>UM</u> ud	Unidad de Obra Transformador de potencia de 400 KVA, conforme a norma UNE 21.428 y/o según normativa vigente, para servicio interior, refrigeración natural en baño de aceite, cuba con aletas llenado integral, tensión primaria 20.000 +/-2,5%, +/- 5% V, tensión secundaria 420/240 V en vacío, con termómetro de esfera con 2 contactos y aguja de máxima.	<u>Precio</u> 9.379,28	<u>Importe</u> 9.379,28
82710001	1,000	Ud	Ud. Complemento de 3 pasatapas para conexión a bornas enchufables en MT en la tapa del transformador.	35,00	35,00
82700001	1,000	Ud	Ud. Juego de puentes III de cables AT unipolares de aislamiento seco HEPRZ1, aislamiento 12/20 kV, de 50 mm2 en Al con sus correspondientes elementos de conexión.	514,00	514,00
82700002	1,000	ud	Ud. Juego de 3 conectores apantallados enchufables rectos lisos 200 A para transformador.	211,99	211,99
82710002	1,000	ud	Ud. Juego de puentes de cables BT unipolares de aislamiento seco 0.6/1 kV de Al, de 2x240mm2 para las fases y de 1x240mm2 para el neutro y demás características según memoria.	1.948,01	1.948,01
82540001	1,000	ud	Ud. Termómetro para protección térmica de transformador, incorporado en el mismo, y sus conexiones a la alimentación y al elemento disparador de la protección correspondiente, debidamente protegidas contra sobreintensidades, instalados.	115,09	115,09
82900010	1,000	ud	Ud. Cuadro de distribución baja tensión modelo JLJCBT0AS51600 de 5 salidas, con seccionador vertical 3P+N, con acometida superior y acometida auxiliar.	3.501,02	3.501,02

<u>Código</u> 81490005	Medición 1,000	<u>UM</u> Ud	Unidad de Obra Ud. de tierras exteriores código 5/62 Unesa, incluyendo 6 picas de 2,00 m. de longitud, cable de cobre desnudo, cable de cobre aislado de 0,6/1kV y elementos de conexión, instalado, según se describe en proyecto. Ud. instalada y funcionando.	<u>Precio</u> 953,33	<u>Importe</u> 953,33
81490006	1,000	Ud	Ud. de tierras exteriores código 5/82 Unesa, incluyendo 8 picas de 2,00 m. de longitud, cable de cobre desnudo, cable de cobre aislado de 0,6/1kV y elementos de conexión, instalado, según se describe en proyecto. Ud. instalada y funcionando.	1.120,47	1.120,47
81490007	1,000	Ud	Ud. tierras interiores para poner en continuidad con las tierras exteriores, formado por cable de 50mm2 de Cu desnudo para la tierra de protección y aislado para la de servicio, con sus conexiones y cajas de seccionamiento, instalado, según memoria. Ud. instalada y funcionando.	1.029,00	1.029,00
82520001	2,000	Ud	Punto de luz incandescente ade- cuado para proporcionar nivel de iluminación suficiente para la revi- sión y manejo del centro, inclui- dos sus elementos de mando y protección, instalado.	347,00	694,00
82520002	1,000	Ud	Punto de luz de emergencia autónomo para la señalización de los accesos al centro, instalado en las puertas de acceso al centro de transformacion. Ud. totalmente instalada y funcionando.	347,00	347,00
82500000	1,000	Ud	Juego de elementos de seguridad para el Centro compuesto por extintor de CO2 de eficacia 89B, banqueta aislante, juego de guantes y placas de señalización de peligro y primeros auxilios.	372,92	372,92

<u>Código</u>	Medición	<u>UM</u>	Unidad de Obra Medición de tensiones de paso y contacto, resistencia de tierras de protección y neutro realizado por un organismo de control autorizado.	<u>Precio</u>	<u>Importe</u>
89000001	1,000	Ud		1.111,97	1.111,97
82811020	1,000	Ud	Ud. Fuente de alimentación . Características: 110 Vac e intensidad de salida 20A. Batería de alimentacion Ni-Cd de 105 Ah. Incluso dos módulos (1+1) rectficadores enchufables en caliente y aparatos de medida de tensión e intensidad en la entrada y salida. Incluso fusibles de batería y automático de salida hasta 32A. Incluye unidad de control. Alimentación de equipos de protección y maniobra en centro de transformación. Ud. instalada y funcionando. Según E.T. 3224	2.756,70	2.756,70

Total Cap. 60.774,95

1.2.3 Instalaciones de enlace baja tensión

Código 81480045	Medición 1,000	<u>UM</u> Ud	Unidad de Obra Conjunto individual trifasico de hasta 100kW para instalación intemperie de tipo empotrado ubicado en el interior de un nicho. El nicho cumplirá normativa de Compañía Distribuidora (MT 2.80.12) con un hueco interior para la caja de dimensiones 70x30x100cm (anchoxprofundoxalto) y se le acometerá por la parte inferior con dos tubos de 160mm. Modelo CPM2-D/E4-MBP o similar. Ud. completa incluyendo: Panel troquelado para un contador trifásico electrónico, una mirilla de policarbonato transparente para la lectura del contador, placa precintable, aislante y transparente de policarbonato, un bloque de bornes de ocho elementos para verificación y cambio de aparatos de medida directa, según NI 76.84.04, panel para montaje de bases BUC, neutro amovible, bornes y regleta de comprobación, base de neutro amovible de 160A con borne bimetálico de hasta 50 mm2 de capacidad, bases unipolares cerradas BUC tamaño 00 de 160A, según NI 76.01.02, cuatro bloques de bornes fijos del tipo BFT-25, según NI 76.84.02. Ud. totalmente montada de acuerda a la normativa del REBT y la Compañía distribuidora, incluyendo nicho según especificaciones de Compañía	<u>Precio</u> 1.165,50	<u>Importe</u> 1.165,50
84000240	75,000	ml	Conductor XZ1(S) AL 0,6/1kV de s e c c i ó n 3x(1x240mm2)+1x150mm2 aluminio. Tendido en canalización preparada al efecto y conexionado. Totalmente terminado y funcionando.	21,76	1.632,00
				Total Cap.	2.797,50

PRESUPUESTOS GENERALES

RESUMEN DE PRESUPUESTO MEDIA TENSIÓN Y CENTRO DE TRANSFORMACIÓN

1	Acometida (eléctrica y centro de transformación Obra civil	351.756,01 € 118.870,03 €
	1.1.1	Movimiento de tierras	37.264,82 €
	1.1.2	Conducciones y arquetas	58.665,69€
	1.1.3	Servicios afectados	20.515,62€
	1.1.4	Varios	2.423,90 €
	1.2	Equipos eléctricos	232.885,98 €
	1.2.1	Acometida media tensión	169.313,53€
	1.2.1.1	Tramo compañía	169.313,53 €
	1.2.2	Centro de seccionamiento y medida	60.774,95 €
	1.2.3	Instalaciones de enlace baja tensión	2.797,50 €

Madrid, Septiembre de 2016

Los Ingenieros autores del Proyecto

Emilio Villar González

Miguel Abad Castiella

El Director del Proyecto

V°B° Jefa de Área de Proyectos de Saneamiento y Reutilización

Ruth Ortega Cosío

María Casanova Sanjuán

ANEJO Nº 7.- CÁLCULOS ELÉCTRICOS DE BAJA TENSIÓN

ANEJO Nº 7.- CÁLCULOS ELÉCTRICOS DE BAJA TENSIÓN INDICE

1	OBJET	ГО		1				
2	INTRODUCCIÓN 1							
3	LISTA DE CARGAS: POTENCIA INSTALADA Y SIMULTÁNEA2							
4	LÍNEA DE MEDIA TENSIÓN Y CENTRO DE TRANSFORMACIÓN4							
5	CÁLCULOS DE CORTOCIRCUITO							
	5.1 OBSERVACIONES							
		5.1.1	CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO	5				
	5.2	CIRCUITO EN EL LADO DE BAJA TENSIÓN	5					
		5.2.1	INTENSIDAD NOMINAL EN EL NUEVO CUADRO GENERAL DE	B.T 6				
6	CÁLCI	JLO DE C	ONDUCTORES	7				
	6.1	CÁLCULO POR DENSIDAD DE CORRIENTE7						
	6.2	CÁLCU	CÁLCULO POR CAÍDA DE TENSIÓN7					
	6.3	INTENS	SIDAD ADMISIBLE	9				
	6.4	CONDU	ICTORES A EMPLEAR	9				
	6.5	.5 REDES SUBTERRANEAS PARA DISTRIBUCIÓN EN BAJA TENSIÓN1						
		6.5.1	DIRECTAMENTE ENTERRADOS	13				
		6.5.2	EN CANALIZACIONES ENTUBADAS	13				
		6.5.3	GALERÍAS O ZANJAS REGISTRABLES	14				
		6.5.4	EN BANDEJAS, SOPORTES, PALOMILLAS O DIRECTAMENTE SUJETOS A LA PARED					
		6.5.5	CIRCUITOS CON CABLES EN PARALELO	15				
	6.6 INSTALACIONES RECEPTORAS							
		6.6.1	SECCIÓN Y TIPOLOGÍA DE CABLES UTILIZADOS	15				
7	CÁLCI	JLO DEL	EQUIPO DE CORRECCIÓN DEL FACTOR DE POTENCIA	16				
	7.1	BATER	ÍA VARIABLE	16				
	7.2 JUSTIFICACIÓN DEL TIPO DE CONDENSADOR EN FUNCIÓN DE LA CONTAMINACIÓN ARMÓNICA							
8	CÁLCI	JLO DE L	A RED DE TIERRAS	20				
9	CÁLC	JLO DE A	LUMBRADO	22				
	9.1	ALUMB	RADO EXTERIOR	22				
	9.2	ALUMB	RADO INTERIOR	23				

APÉNDICE 1.- CÁLCULOS LUMÍNICOS

1.-OBJETO

El objeto del presento anejo es definir las instalaciones eléctricas de baja tensión en la EDAR de Valdemaqueda, debidas a las obras de mejora de la planta por renovación de instalaciones eléctricas actuales y nuevo edificio de centro de transformación.

En cuanto a las calidades y criterios de diseño no indicados en el presente documento se deberán consultar los documentos Pliego de Bases Generales y especificaciones técnicas relacionadas.

2.-INTRODUCCIÓN

Tal como se indica en el Anejo nº 6, la planta se alimenta actualmente mediante energía solar fotovoltaica y se va a proceder a sustituir la fuente de energía por una alimentación de red eléctrica de baja tensión.

Como dicha red de suministro no se encuentra en los alrededores de la EDAR, este proyecto incluye la ejecución de una nueva acometida subterránea de alta tensión (que acaba en un centro de transformación) de aproximadamente 1200m compuesta por conductores unipolares HEPRZ1 tendidos bajo tubo, realizando el enganche en el punto comunicado por Iberdrola, al suroeste de la población de Valdemaqueda, en el cruce de las calles Puente Romano con Acacias. Bajando por la calle Puente Romano, se llega al final de la zona urbanizada, coincidente con el cruce del camino Villaescusa. Desde éste, la traza subterránea continúa por el camino de Villaescusa de tierra, hasta la localización del nuevo CT cerca de la parcela de la EDAR. Dicho centro se alojará en un edificio prefabricado destinado a tal fin, y será propiedad de la compañía distribuidora Iberdrola. Desde el CT partirán diversas redes de distribución en BT, que alimentaran a los diferentes clientes, entre ellos a la EDAR Valdemaqueda.

Se ha diseñado el centro de transformación con una máquina de 400kVA. La potencia del centro se ha diseñado teniendo en cuenta la demanda de los distintos usuarios finales, y el escenario futuro de balance de potencias de la EDAR, contando con la ampliación de la línea de tratamiento que se pretende realizar en un futuro próximo.

El cálculo de instalaciones de media tensión forma parte del objeto del Anejo nº6 citado, por lo que se remite a éste para consultar su diseño así como cualquier información relacionada.

Debido a que el actual Cuadro General de Distribución de la EDAR no es apto para afrontar una ampliación de potencia, se ha previsto su renovación completa, por otro nuevo que recibirá la alimentación desde el CT y alimentará la planta por completo.

Para alimentar eléctricamente los motores de la EDAR actual se instala un nuevo cuadro de protección y control de motores, que a su vez recibe la potencia directamente del centro de transformación por lo que también realiza la función de cuadro de distribución. Este único cuadro híbrido se denomina Cuadro General de Baja tensión, y dispone de dos acometidas: una de la derivación individual de la red de distribución y otra para conexión eventual de un grupo electrógeno móvil. Al realizar doble función de CGD y CCM, toma para su composición características de ambos, definidas en la E.T. 3301 y E.T. 3311.

Debido a lo anterior, una de sus características especiales es que toda la aparamenta está en carros extraíbles, tanto la de acometida como las salidas a motor. Será un armario modular, de intensidad nominal 250A, grado de protección IP54, con capacidad de cortocircuito 50kA, compartimentación 4a y ejecución extraíble, y fácilmente ampliable (de cara a la ampliación futura). Dispone de un cuadro asociado para alojar los variadores y arrancadores.

Todos los cuadros de baja tensión se instalarán en una sala eléctrica exclusiva, en el nuevo edificio de control. También se instala en la misma sala el Cuadro General de Alumbrado y Servicios, cuadro de control con PLC y los módulos de baterías automáticas.

Además se prevé la ampliación de la red de tierras e instalación de alumbrado exterior e interior en el edifico a construir.

Todos los cableados y canalizaciones actuales serán sustituidos por nuevos.

3.-LISTA DE CARGAS: POTENCIA INSTALADA Y SIMULTÁNEA

Se presenta a continuación la lista de motores de la EDAR tras las obras de mejora de instalaciones eléctrica.

En la columna "Estado de Instalación" se diferencian las cargas ya existentes de algunas de nueva instalación relacionadas con instalaciones del nuevo edificio. Las cargas se ordenan siguiendo el orden que marca el proceso de tratamiento del agua:

Nº DEL CIRCUITO	DESIGNACIÓN	EQUIPOS INSTALADO S	EQUIPOS EN FUNCIONAM.	POTENCIA UNITARIA	POTENCIA INSTALADA	POTENCIA SIMULTANEA	ESTADO INSTAL. ACTUADOR	Salidas tipo S/ET3311
		Ud	Ud	kW	kW	kW		
	CUADRO MOTORES EDAR VALDEMAQUEDA	24,00	21,00		37,42	30,73		
A1	Prensa hidráulica	1	1	1,75	1,75	1,75	Existente	FEEDER EXTRAIBLE
A2	Tamiz de finos 3mm	1	1	0,30	0,30	0,30	Existente	AD-2
A3	Reja de gruesos	1	1	0,90	0,90	0,90	Existente	AD-2
A4	Biocilindro (VF)	2	2	2,20	4,40	4,40	Existente	VF-1
A5	Bomba sumergible fangos primarios	2	2	1,10	2,20	2,20	Existente	AD-4
A6	Bomba sumergible fangos biológicos (VF)	2	2	1,10	2,20	2,20	Existente	VF-1
A7	Bomba tornillo helicoidal fangos primarios (VF)	2	1	0,37	0,74	0,37	Existente	VF-1
A8	Bomba tornillo helicoidal fangos secundarios (VF)	2	1	0,37	0,74	0,37	Existente	VF-1
A9	Bombeo de vaciados y drenajes	2	1	2,20	4,40	2,20	Existente	AD-4
A10	Actuador válvula motorizada tajadera espesador	1	1	0,02	0,02	0,02	Existente	FEEDER EXTRAIBLE
A11	Varios	1	1	5,00	5,00	5,00	Existente	FEEDER EXTRAIBLE
A12	Cuadro general de alumbr. y servicios				10,27	6,52	Nuevo	FJA-2
A13	Control	2	2	1,00	2,00	2,00	Nuevo	FJA-1
A14	Ventilador extractor ed.eléctrico	5	5	0,50	2,50	2,50	Nueno	AD-1

Cuadro general de alumbrado y servicios:

DESIGNACIÓN	POTENCIA UNITARIA	UNIDADES	POTENCIA INSTALADA	POTENCIA SIMULTANEA
	Ud	Ud	Kw	Kw
EDAR VALDEMAQUEDA				
CUADRO GENERAL ALUMBRADO Y SERVICIOS			10,27	6,52
Alumbrado exterior - Farolas 250 W VSAP	0,25	5,00	1,25	1,25
Alumbrado exterior - Brazo mural 150W VSAP	0,15	6,00	0,90	0,90
Alumbrado interior ed. control Fluorescente 2x36W	0,07	19,00	1,37	1,37
Alumbrado interior ed. control Fluorescente 4x14W	0,06	2,00	0,11	0,11
Alumbrado interior ed. control Incandescentes 70W	0,07	2,00	0,14	0,14
Tomas fuerza ed. control	5,00	1,00	5,00	1,25
Salida a cuadro local biológico	1,50	1,00	1,50	1,50

TOTALES

Nº DE RECEPTORES PROYECTO ACTUAL	24	Ud.
POTENCIA INSTALADA EDAR PROYECTO ACTUAL	37,42	kW
POTENCIA SIMULTANEA EDAR PROYECTO ACTUAL	30,73	kW

Teniendo en cuenta que a la anterior potencia simultánea punta calculada, se le aplica un *factor de funcionamiento* de 0,8 puesto que no todos los motores funcionan a la vez y las potencias declaradas son nominales, tenemos una potencia en simultáneo de 24,6kW en la EDAR.

Con estos datos, el factor de utilización de la potencia solicitada a la compañía distribuidora para que sea suministrada a la EDAR (100kW) es del 25%. El resto de

potencia queda reservada para el escenario futuro de ampliación de la línea de tratamiento.

4.-<u>LÍNEA DE MEDIA TENSIÓN Y CENTRO DE</u> TRANSFORMACIÓN

Se va a proceder a la instalación de una nueva línea de media tensión subterránea de 20kV que va a alimentar un centro de transformación de compañía que pretende atender las demandas de potencia de diversos clientes, entre ellos la EDAR de Valdemaqueda. Esta línea estará constituida por conductor HEPRZ1 Al 12/20kV, de sección 240mm² para todo el tramo compañía (diseñado según criterios de la propia suministradora) diseñado para ser capaz de transportar la potencia máxima.

A partir del centro de transformación, se entregará la energía en baja tensión. Desde este arranca una línea, red de distribución Iberdrola, de aproximadamente 75m composición XZ1(S) Al 0,6/1kV 3x240mm²+1x150mm² que llega hasta la caja general de protección y mando, a instalar en la puerta de acceso a la EDAR. Junto a ella, se instalará el armario con el contador.

Desde el contador, arranca la línea de derivación individual de aproximadamente 100m con cable RZ1 Cu 0,6/1kV 3x150+1x150mm² que se introduce en el interior de la planta para llegar hasta la sala eléctrica del nuevo edificio y acometer al Cuadro General de Baja Tensión de la planta.

Todos los cálculos justificativos, planos de trazado, ubicación de los elementos de media tensión y centro de transformación se encuentran en el *Anejo nº6 Media Tensión y Centro de Transformación*, al cual se remite para su consulta.

5.-CÁLCULOS DE CORTOCIRCUITO

5.1 OBSERVACIONES

Para el cálculo de las intensidades que origina un cortocircuito, se tendrá en cuenta la potencia de cortocircuito de la red de Media Tensión, valor que debe ser especificado por la Compañía suministradora y que se supone de 350MVA.

5.1.1 CÁLCULO DE LAS CORRIENTES DE CORTOCIRCUITO

El cálculo de la corriente de cortocircuito en el lado primario no procede en el presente anejo, por estar dedicado a cálculos de baja tensión. Se puede consultar en el correspondiente Anejo nº 6 de cálculos de media tensión y centro de transformación.

Para los cortocircuitos secundarios, se va a considerar que la potencia de cortocircuito disponible es la teórica del transformadore de MT-BT, siendo por ello más conservadores que en las consideraciones reales.

La corriente de cortocircuito secundaria de un transformador trifásico, viene dada por la expresión:

Iccs =
$$\frac{S}{1,732 \text{ x Ecc x V}_s}$$
 (3.3.2.b)

donde:

S = potencia del transformador en kVA

Ecc = tensión de cortocircuito del transformador

Vs = tensión secundaria en V

Iccs = corriente de cortocircuito en KA

5.2 CORTOCIRCUITO EN EL LADO DE BAJA TENSIÓN

En este punto se analizarán las intensidades de cortocircuito que deberán soportar los diferentes interruptores de acometida al Cuadro General de Baja Tensión, así como la intensidad a soportar por su embarrado.

 Para un transformador de 400 kVA, la tensión porcentual de cortocircuito del 4%, y la tensión secundaria es de 400 V.

La intensidad de cortocircuito en el lado de Baja Tensión con 400 V será, según la fórmula 3.3.2.b:

Iccs =
$$\frac{S}{1,732 \text{ x Ecc x V}_s}$$
 =14,43 kA

La aparamenta de acometida al CGBT deberá como mínimo soportar el anterior valor de cortocircuito. En este valor no se ha tenido en cuenta la atenuación que produce la impedancia asociada a los puentes de baja tensión.

La capacidad de cortocircuito del Cuadro General de Baja Tensión Nuevo es de 50kA, por lo que se cumple el valor de cortocircuito aportado el transformador.

El paso de alimentación de red a una posible alimentación de grupo será con paso por cero, por lo que al no funcionar en paralelo con la red no hay que tenerlo en cuenta para dimensionar la capacidad de cortocircuito del embarrado.

Los cuadros secundarios asociados a máquinas o cuadros locales de alumbrado y usos se diseñarán para soportar una capacidad de cortocircuito de 16 kA.

La repercusión en el lado de M.T. del cortocircuito en B.T. será despreciable, para demostrarlo realizaremos el cálculo:

$$Icc_r = \frac{V_{BT}}{V_{MT} \times 10^3} \times Icc_{BT} = \frac{400}{20 \times 10^3} \times 14,43 = 0,29kA$$

Por lo que un cortocircuito en el lado de B.T. no afectará a la instalación de M.T.

5.2.1 INTENSIDAD NOMINAL EN EL NUEVO CUADRO GENERAL DE B.T.

La intensidad nominal viene dada por la expresión:

$$I_s = \frac{S}{1,732 \times V_s}$$

Donde:

- S = potencia aparente demandada = 160kVA (según estimación, la potencia futura simultanea serán 120,26kW lo que es 150,33kVA)
- o Vs= tensión en kV=0,4 kV
- Is = intensidad en A
- Cosφ= factor de potencia de la instalación=0,80 (conservador)

Sustituyendo los valores la intensidad nominal es:

o Is= 230,94 A.

El Cuadro General de Baja Tensión dispondrá de dos entradas generales, una para la derivación individual y otra para un posible grupo electrógeno, que se compondrán de interruptores automáticos de caja moldeada de calibre 250A nominales, con capacidad de regulación hasta 0,4xln, que serán tarados a 231A.

6.-CÁLCULO DE CONDUCTORES

Los cables se han calculado por intensidad de corriente y por caída de tensión.

6.1 CÁLCULO POR DENSIDAD DE CORRIENTE

La intensidad se ha obtenido de las fórmulas:

$$I_n = \frac{K \times P}{\sqrt{3} \times U \times \cos \alpha}$$
 Para líneas trifásicas

$$I_n = \frac{P}{U}$$
 Para líneas monofásicas

donde:

I = Intensidad de corriente en amperios

K = Coeficiente de carga

K = 1,8 para lámparas de descarga

K = 1,0 para las demás cargas

P = Potencia activa en vatios

U = Tensión de servicio, en voltios

U = 400 V para líneas trifásicas

U = 230 V para líneas monofásicas

 $\cos \alpha = 0.8$

6.2 CÁLCULO POR CAÍDA DE TENSIÓN

La caída de tensión se ha calculado por las fórmulas:

$$\Delta U = \frac{K \times P \times L}{C \times S \times U}$$
 Para líneas trifásicas

$$\Delta U = \frac{2 \times K \times P \times L}{C \times S \times U}$$
 Para líneas monofásicas

Donde:

ΔU = Caída de tensión del tramo en voltios

K = Coeficiente por tipo de carga

K = 1,8 para lámparas de descarga

K = 1 para las demás cargas

P = Potencia activa transportada, en vatios

L = Longitud de la línea en metros

C = Conductibilidad del cobre

S = Sección del conductor de fase en mm2

U = Tensión entre fases en voltios

U = 400 V para líneas trifásicas

U = 230 V para líneas monofásicas

Cálculo de la conductividad del cobre:

$$C = 1/\rho$$

$$\rho = \rho_{20}[1+\alpha (T-20)]$$

$$T = T_0 + [(T_{max}-T_0) (I/I_{max})^2]$$

Siendo,

C = Conductividad del conductor a la temperatura T.

 ρ = Resistividad del conductor a la temperatura T.

 ρ_{20} = Resistividad del conductor a 20°C.

Cu = 0.018

AI = 0.029

 α = Coeficiente de temperatura:

Cu = 0.00392

AI = 0.00403

T = Temperatura del conductor (°C).

 T_0 = Temperatura ambiente (°C):

Cables enterrados = 25°C

Cables al aire = 40°C

T_{max} = Temperatura máxima admisible del conductor (°C):

XLPE, EPR = 90°C

 $PVC = 70^{\circ}C$

I = Intensidad prevista por el conductor (A).

I_{max} = Intensidad máxima admisible del conductor (A).

Según el apartado 2.2.2. de la Instrucción ITC-BT-19, la caída de tensión en una instalación como la que nos atañe en este proyecto puede llegar a ser del 3% para alumbrado y del 5% para los demas usos.

6.3 INTENSIDAD ADMISIBLE

Los cálculos han sido realizados, siempre del lado de la seguridad y cumpliendo con lo prescrito en el Real Decreto 842/2.002. Para instalaciones enterradas en zanja en el interior de tubos o similares (ITC-BT-07 3.1.3), para determinar la intensidad admisible de los conductores se ha considerado un coeficiente de seguridad de k=0,8.

Además se los cables se dimensionan para que puedan soportar un 25 % más de la intensidad nominal prevista para cumplir con la ITC-BT-47, que exige esta condición para la instalaciones de motores.

6.4 CONDUCTORES A EMPLEAR

A continuación se incluyen las tablas de caídas de tensión de cada componente de la instalación:

DE CT Iberdrola A C.G.P.M. (Red de distribución)

-Tipo de conductor	XZ1 (S) AI 0,6/1 KV	ΚV
-Potencia	120,26	KW
-Longitud	75,00	m
-Tension	400,00	V.
-Nº de cables POR FASE	1,00	AL
-Seccion unitaria	240,00	mm2
-Seccion total	240,00	mm2
-Caida de tension	0,78	%
-Intensidad maxima con factor de corrección (galeria)	336,00	A.
-Intensidad soportada por el conductor	217,23	A.
-Longitud total de conductor de fase	225,00	m.
-Longitud total de conductor en neutro	75,00	m.

NOTA: la línea está calculada para la potencia futura

DE C.G.P.M. A C.G.B.T (Acometida individual)

-Tipo de conductor	RZ1 Cu 0,6/1 KV	ΚV
-Potencia	120,26	KW
-Longitud	100,00	m
-Tension	400,00	V.
-Nº de cables POR FASE	1,00	Cu
-Seccion unitaria	150,00	mm2
-Seccion total	150,00	mm2
-Caida de tension	1,67	%
-Intensidad máxima admisible (montaje F)	308,00	A.
-Intensidad soportada por el conductor	217,23	A.
-Longitud total de conductor de fase	300,00	m.
-Longitud total de conductor en neutro	100,00	m.

NOTA: la línea está calculada para la potencia futura

DE C.G.B.T. A CUADRO DE SERVICIOS

-Tipo de conductor	RV-k Cu 0,6/1kV	
-Potencia	6,52	KW
-Longitud	15,00	m
-Tension	400,00	V.
-Nº de cables POR FASE	1,00	Cu
-Seccion unitaria	16,00	mm2
-Seccion total	16,00	mm2
-Caida de tension	0,07	%
-Intensidad máxima con factor de corrección	87,00	A.
-Intensidad soportada por el conductor	11,78	A.
-Longitud total de conductor de fase	45,00	m.
-Longitud total de conductor en neutro	15,00	m.

CÁLCULO BATERÍA DE CONDENSADORES VARIABLE (Red)

-Tipo de conductor	RV-k Cu 0,6/1kV	KV
-Longitud	10,00	m
-Tension	400,00	V.
-Nº de cables POR FASE	1,00	
-Seccion unitaria	16,00	mm2
-Seccion total	16,00	mm2
-Intensidad máxima con factor de corrección	87,00	A.
-Intensidad soportada por el conductor	54,01	A.
-Longitud total de conductor de fase	30,00	m.

INSTALACIÓN DESDE C.G.B.T. A RECEPTORES

		Potencia	Nº de	Sección	Nº cables	Seccion total	Longitud	Longitud	Tension	Caída de	Caída de	Intensidad	Intensidad
	RECEPTORES		elementos	cable		por fase	Unitaria	Total		Tensión	Tensión	conductor	admisible
		(kW)	instalados	(mm.2)	por fase	(mm2)	(m.)	(m.)	(v.)	Parc.(%)	Tot.(%)	(A.)	(A.)
	CUADRO MOTORES EDAR VALDEMAQUEDA												
A1	Prensa hidráulica	1,75	1,00	2,50	1,00	2,50	75,00	75,00	400,00	0,75	2,42	2,98	20,00
A2	Tamiz de finos 3mm	0,30	1,00	2,50	1,00	2,50	75,00	75,00	400,00	0,13	1,80	0,51	20,00
А3	Reja de gruesos	0,90	1,00	2,50	1,00	2,50	75,00	75,00	400,00	0,38	2,05	1,53	20,00
A4	Biocilindro (VF)	2,20	2,00	6,00	1,00	6,00	70,00	140,00	400,00	0,36	2,03	3,74	35,20
A5	Bomba sumergible fangos primarios	1,10	2,00	6,00	1,00	6,00	50,00	100,00	400,00	0,13	1,80	1,87	35,20
A6	Bomba sumergible fangos biológicos (VF)	1,10	2,00	6,00	1,00	6,00	55,00	110,00	400,00	0,14	1,81	1,87	35,20
A7	Bomba tornillo helicoidal fangos primarios (VF)	0,37	2,00	6,00	1,00	6,00	65,00	130,00	400,00	0,06	1,73	0,63	35,20
A8	Bomba tornillo helicoidal fangos secundarios (VF)	0,37	2,00	6,00	1,00	6,00	55,00	110,00	400,00	0,05	1,72	0,63	35,20
A9	Bombeo de vaciados y drenajes	2,20	2,00	6,00	1,00	6,00	65,00	130,00	400,00	0,34	2,01	3,74	35,20
A10	Actuador válvula motorizada tajadera espesador	0,02	1,00	6,00	1,00	6,00	60,00	60,00	400,00	0,00	1,67	0,03	35,20
A11	Varios	5,00	1,00	6,00	1,00	6,00	50,00	50,00	400,00	0,59	2,26	8,50	35,20
A12	Cuadro general de alumbr. y servicios	6,52	1,00	6,00	1,00	6,00	15,00	15,00	400,00	0,23	1,90	11,08	35,20
A13	Control	1,00	2,00	2,50	1,00	2,50	20,00	40,00	230,00	0,34	2,01	2,96	20,00
A14	Ventilador extractor ed.eléctrico	0,50	5,00	2,50	1,00	2,50	10,00	50,00	400,00	0,03	1,70	0,85	20,00

6.5 REDES SUBTERRANEAS PARA DISTRIBUCIÓN EN BAJA TENSIÓN

Para los cables instalados en instalación enterrada se ha aplicado lo dispuesto por el reglamento de baja tensión en su ITC-BT-07.

6.5.1 DIRECTAMENTE ENTERRADOS

La profundidad, hasta la parte inferior del cable, no será menor de 0,60 m en acera, ni de 0,80 m en calzada. Cuando existan impedimentos que no permitan lograr las mencionadas profundidades, éstas podrán reducirse, disponiendo protecciones mecánicas suficientes.

Para conseguir que el cable quede correctamente instalado sin haber recibido daño alguno, y que ofrezca seguridad frente a excavaciones hechas por terceros, en la instalación de los cables se seguirán las instrucciones descritas a continuación:

El lecho de la zanja que va a recibir el cable será liso y estará libre de aristas vivas, cantos, piedras, etc. En el mismo se dispondrá una capa de arena de mina o de río lavada, de espesor mínimo 0,05 m sobre la que se colocará el cable. Por encima del cable irá otra capa de arena o tierra cribada de unos 0,10 m de espesor. Ambas capas cubrirán la anchura total de la zanja, la cual será suficiente para mantener 0,05 m entre los cables y las paredes laterales.

Por encima de la arena todos los cables deberán tener una protección mecánica, como por ejemplo, losetas de hormigón, placas protectoras de plástico, ladrillos o rasillas colocadas transversalmente. Podrá admitirse el empleo de otras protecciones mecánicas equivalentes. Se colocará también una cinta de señalización que advierta de la existencia del cable eléctrico de baja tensión. Su distancia mínima al suelo será de 0,10 m, y a la parte superior del cable de 0,25 m.

Se admitirá también la colocación de placas con la doble misión de protección mecánica y de señalización.

6.5.2 EN CANALIZACIONES ENTUBADAS

Serán conformes con las especificaciones del apartado 1.2.4. de la ITC-BT-21. No se instalará más de un circuito por tubo.

Se evitarán, en lo posible, los cambios de dirección de los tubos. En los puntos donde se produzcan y para facilitar la manipulación de los cables, se dispondrán arquetas con tapa, registrables o no. Para facilitar el tendido de los cables, en los tramos rectos se instalarán arquetas intermedias, registrables, ciegas o simplemente calas de tiro, como máximo cada 40 m. Esta distancia podrá variarse de forma razonable, en función de derivaciones, cruces u otros condicionantes viarios. A la entrada en las arquetas, los tubos deberán quedar debidamente sellados en sus extremos para evitar la entrada de roedores y de agua.

6.5.3 GALERÍAS O ZANJAS REGISTRABLES

En tales galerías se admite la instalación de cables eléctricos de alta tensión, de baja tensión y de alumbrado, control y comunicación.

No se admite la existencia de canalizaciones de gas. Sólo se admite la existencia de canalizaciones de agua, si se puede asegurar que en caso de fuga, el agua no afecte a los demás servicios (por ejemplo, en un diseño de doble cuerpo, en el que en un cuerpo se dispone una canalización de agua, y en el otro cuerpo, estanco respecto al anterior cuando tiene colocada la tapa registrable, se disponen los cables de baja tensión, de alta tensión, de alumbrado público, semáforos, control y comunicación).

Las condiciones de seguridad más destacables que deben cumplir este tipo de instalación son:

- estanqueidad de los cierres
- buena renovación de aire en el cuerpo ocupado por los cables eléctricos, para evitar acumulaciones de gas y condensación de humedades, y mejorar la disipación de calor

6.5.4 EN BANDEJAS, SOPORTES, PALOMILLAS O DIRECTAMENTE SUJETOS A LA PARED

Normalmente, este tipo de instalación sólo se empleará en subestaciones u otras instalaciones eléctricas y en la parte interior de edificios, no sometida a la intemperie, y en donde el acceso quede restringido al personal autorizado. Cuando las zonas por las que discurra el cable sean accesibles a personas o vehículos, deberán disponerse protecciones mecánicas que dificulten su accesibilidad.

6.5.5 <u>CIRCUITOS CON CABLES EN PARALELO</u>

Cuando la intensidad a transportar sea superior a la admisible por un solo conductor se podrá instalar más de un conductor por fase, según los siguientes criterios:

- o emplear conductores del mismo material, sección y longitud.
- o los cables se agruparán al tresbolillo, en ternas dispuestas en uno o varios niveles.

6.6 INSTALACIONES RECEPTORAS

También se ha tenido en cuenta la instrucción ITC-BT-19: "Instalaciones interiores o receptoras. Prescripciones generales".

Asimismo, se ha cumplido la Tabla referente a las secciones mínimas de los conductores de fase respectivos.

TABLA V. CONDUCTOR	RES DE PROTECCIÓN
Sección del conductor de fase de la instalación (mm²)	Sección mínima del conductor de protección (mm²)
S < 16	5
<i>16 < S < 35</i>	16
S > 35	5/2

6.6.1 <u>SECCIÓN Y TIPOLOGÍA DE CABLES UTILIZADOS</u>

Como secciones mínimas de conductores se han adoptado las siguientes:

Cables de alimentación a Motores: 2,5 mm2

Cables de alimentación a Cuadros locales de alumbrado: 6 mm2

Cables de alimentación a tomas de corriente: 2,5 mm2

Cables de alimentación a puntos de alumbrado: 1,5 mm2

Cables de alimentación del alumbrado exterior: 6 mm2

Cables de mando y control: 1,5 mm2

Los conductores proyectados son de los tipos siguientes:

Cables de CT Iberdrola a Cuadro de Protección y Medida: XZ1(S) 0,6/1 KV

Cables de Cuadro de Protección y Medida a C.G.B.T.: RZ1 06/1 KV

Cables de Cuadro General a Cuadros Locales: RV-06/1 KV

Cables de Cuadros de Fuerza a motores y equipos: RV-0,6/1 KV

Cables para alimentaciones con variador: RVKV-K 0,6/1KV

Cables para instrumentación: VC4V-K (señales analógicas) y VV-K (señales digitales)

Cables en zonas con ambientes explosivos: RVFV-06/1 KV

Cables de iluminación en zonas nobles tendidos en falto techo: H07Z1-K

7.-CÁLCULO DEL EQUIPO DE CORRECCIÓN DEL FACTOR DE POTENCIA

7.1 BATERÍA VARIABLE

Se ha previsto la instalación de un equipo corrector de factor de potencia, que se conectará al nuevo CGBT y estará dimensionado para las condiciones de cargas que cuelgan de éste. En dicho dimensionamiento se excluyen las cargas que usan para su accionamiento variadores de frecuencia, ya que en ellos el factor de potencia es muy próximo a la unidad.

Los datos de partida para el cálculo son:

Tensión nominal: V = 400 V

Factor de potencia inicial: $\cos \varphi_1 = 0.85$

Potencia activa (descontando equipos con VF): Pn en kW

Factor de potencia final: $\cos \varphi_2 = 1$

La potencia inicial de la instalación es:

 $Q1 = P tg \phi_1$

La potencia reactiva final deberá ser:

 $Q2 = P tg \phi_2$

El equipo de condensadores deberá suministrar una potencia capacitativa tal que:

 $Qc = Q1 - Q2 = P (tg \varphi_1 - tg \varphi_2)$

Teniendo:

$$\cos \varphi 1 = 0.85$$
 $tg \varphi 1 = 0.59$

$$\cos \varphi 2 = 1$$
 $\operatorname{tg} \varphi 2 = 0$

A continuación se incluye el sumatorio de potencia activa a tener en cuenta para el diseño del equipo de compensación automático:

Nº DEL CIRCUITO	DESIGNACIÓN	EQUIPOS INSTALADO S	EQUIPOS EN FUNCIONAM.	POTENCIA UNITARIA	P. ACTIVA A COMPENSAR
		Ud	Ud	kW	kW
	CUADRO MOTORES EDAR VALDEMAQUEDA	24,00	21,00		24,39
A1	Prensa hidráulica	1	1	1,75	1,75
A2	Tamiz de finos 3mm	1	1	0,30	0,3
А3	Reja de gruesos	1	1	0,90	0,9
A4	Biocilindro (VF)	2	2	2,20	0
A5	Bomba sumergible fangos primarios	2	2	1,10	2,2
A6	Bomba sumergible fangos biológicos (VF)	2	2	1,10	0
A7	Bomba tornillo helicoidal fangos primarios (VF)	2	1	0,37	0
A8	Bomba tornillo helicoidal fangos secundarios (VF)	2	1	0,37	0
A9	Bombeo de vaciados y drenajes	2	1	2,20	2,2
A10	Actuador válvula motorizada tajadera espesador	1	1	0,02	0,02
A11	Varios	1	1	5,00	5
A12	Cuadro general de alumbr. y servicios				7,52
A13	Contol	2	2	1,00	2
A14	Ventilador extractor ed.eléctrico	5	5	0,50	2,5

Cálculos de los equipos de compensación de potencia reactiva:

CÁLCULO BATERÍA DE CONDENSADORES VARIABLE (Red)		
-Potencia	24,39	Kw
-Tensión nominal	400,00	V
-Factor de potencia inicial	0,85	
-Factor de potencia final	1,00	Cu
-Potencia necesaria	15,12	KVAr
-Potencia seleccionada	25,00	KVAr
-Escalones	5+10+10	
-Tipo de conductor	RV-k Cu 0,6/1kV	KV
-Longitud	10,00	m
-Tension	400,00	V.
-Nº de cables POR FASE	1,00	
-Seccion unitaria	16,00	mm2
-Seccion total	16,00	mm2
-Intensidad máxima con factor de corrección	87,00	A.
-Intensidad soportada por el conductor	54,01	A.
-Longitud total de conductor de fase	30,00	m.

Nota: la batería lleva un interruptor de protección de 63A 3P

Se instalará una batería variable de 25kVA (5+10+10).

7.2 JUSTIFICACIÓN DEL TIPO DE CONDENSADOR EN FUNCIÓN DE LA CONTAMINACIÓN ARMÓNICA

Debido a la gran problemática que existe en los ámbitos industriales por contaminación armónica, resulta necesaria una justificación del tipo de condensador a instalar pudiendo ser: condensador estándar, condensador reforzado (dieléctrico y mayoración de tensión) o condensador reforzado con filtro de rechazo (189Hz), según ET 3322.

Los datos necesarios para el cálculo son:

- Qc = Potencia de la batería de condensadores al 100%.
- St = Potencia aparente de transformadores conectados simultáneamente.
- Snl = Potencia aparente de cargas no lineales conectadas simultáneamente.

La potencia de la batería de condensadores deberá mayorarse en caso que la tensión nominal de los mismos sea superior a la de servicio, a fin de mantener la capacidad de compensación reactiva requerida.

Analizamos a continuación el caso para la batería automática a conectar en la instalación.

Los datos de partida para el cálculo son:

- Qc = 25 kVAr
- St = 400 kVA (aunque el transformador es externo a la planta, se realiza el cálculo con la potencia nominal de éste)
- Snl = 7,34 kVA (equipos accionados mediante VF)

Aplicando la siguiente formula obtenemos los valores buscados

$$Qc/St$$
 (%) = $25/400*100 = 6,25$ %

Dibujamos los valores obtenidos en los ejes de la siguiente gráfica (según ET 3322):

Q⇔(%) S₁	2,6	5	10	15	20	25	30	35	40	42,6	45	50
Q:(%)	38,82	37,24	33,53	29,47	25,00	20,20	15,10	9,60	3,80	0,00	-	
Q:(%)		38,62	36,71	34,59	32,06	29,47	26,91	24,31	21,39	19,80	18,28	15,10

Observamos que para este caso particular, nos encontramos en la zona azul de la gráfica que corresponde con la tensión estándar y que por lo tanto, no será necesaria ninguna medida de protección adicional a la hora de seleccionar la batería de condensadores.

Concluimos que no existe contaminación armónica significativa, y por tanto la batería no necesita refuerzo.

8.-CÁLCULO DE LA RED DE TIERRAS

La red de tierras de la Planta se ha proyectado basándose en los siguientes elementos:

- o 5 picas de acero cobrizado de 2 m de longitud.
- o 60 m de cable de cobre desnudo de 50mm² de sección.
- o Sensibilidad de los interruptores de protección diferencial.

Para el proyecto de la red de tierras se ha considerado el Reglamento Electrotécnico de Baja Tensión, Instrucción ITC-BT-18, de "Instalaciones de puestas a tierra" y, para los cálculos, el apartado 9, "Resistencia de las tomas de tierra" en el que se incluyen las siguientes tablas:

Tabla 3. Valores orientativos de la resistividad en función del terreno

Naturaleza terreno	Resistividad en Ohm.m
Terrenos pantanosos	de algunas unidades a 30
Limo	20 a 100
Humus	10 a 150
Turba húmeda	5 a 100
Arcilla plástica	50
Margas y Arcillas compactas	100 a 200
Margas del Jurásico	30 a 40
Arena arcillosas	50 a 500
Arena silícea	200 a 3.000
Suelo pedregoso cubierto de césped	300 a 5.00
Suelo pedregoso desnudo	1500 a 3.000
Calizas blandas	100 a 300
Calizas compactas	1.000 a 5.000
Calizas agrietadas	500 a 1.000
Pizarras	50 a 300
Roca de mica y cuarzo	800
Granitos y gres procedente de alteración	1.500 a 10.000
Granito y gres muy alterado	100 a 600

Tabla 4. Valores medios aproximados de la resistividad en función del terreno.

Naturaleza del terreno	Valor medio de la resistividad Ohm.m
Terrenos cultivables y fértiles, terraplenes compactos y húmedos	50
Terraplenes cultivables poco fértiles y otros terraplenes	500
Suelos pedregosos desnudos, arenas secas permeables	3.000

Tabla 5. Fórmulas para estimar la resistencia de tierra en función de la resistividad del terreno y las características del electrodo

Electrodo	Resistencia de Tierra en Ohm				
Placa enterrada	R = 0,8 p/P				
Pica vertical	R = ρ/L				
Conductor enterrado horizontalmente	R = 2 p/L				
ρ, resistividad del terreno (Ohm.m) P , perímetro de la placa (m)					
L, longitud de la pica	a o del conductor (m)				

Aplicando las tablas anteriores, tenemos:

Resistividad de las picas:

$$R1 = \tau/L1 = 500/(5 \times 2) = 50 \text{ Ohmios}$$

o Resistencia del cable:

$$R2 = 2 \tau/L2 = 2 \times 500/60 = 16,66 \text{ Ohmios}$$

o La resistencia equivalente de dos resistencias en paralelo, es:

$$Req = R1 \times R2 / R1 + R2$$

Por tanto, tenemos:

Req =
$$50 \times 16,66 / (50 + 16,66) = 12,49$$
 Ohmios

La tensión a que estarán sometidas las masas metálicas en caso de defecto será:

$$Ud = Is x Req$$

donde:

Ud = Tensión en voltios

Is = Intensidad máxima de defecto a tierra o sensibilidad de disparo de la protección diferencial, en amperios

Req = Resistencia equivalente de la red de tierras, en Ohmios

Aplicando:

$$U = 0.3 \text{ A} \times 12,49\Omega = 3,75 \text{ Voltios}$$

Como se puede ver, esta tensión es perfectamente admisible y no constituye peligro alguno para las personas.

Además, se prevé la unión de la red de tierras con la existente en la EDAR, por lo que la resistencia del sistema conjunto disminuirá, y la tensión resultante será menor que la calculada.

Aun así, por la importancia que ofrece, desde el punto de vista de la seguridad, la instalación de toma de tierra definitiva deberá ser comprobada por el Director de Obra o Instalador Autorizado, para comprobar que la misma queda dentro de lo estipulado por la ITC-BT-18 del Reglamento Electrotécnico de Baja Tensión.

De no ser así se deberá realizar una mejora de la misma.

9.-CÁLCULO DE ALUMBRADO

9.1 ALUMBRADO EXTERIOR

A partir de las dimensiones del vial, de la disposición y dimensiones de los báculos y del tipo de luminarias y lámparas proyectadas, se calcula en primer lugar la utilancia o factor de utilización del punto de luz.

El factor de utilización se obtiene de las curvas de coeficientes de utilización en función de los parámetros a y b que se definen por:

$$\alpha = B \frac{1}{H}$$
 (Lado calzada)

$$\beta = \frac{d}{H}$$
 (Lado acera)

Donde:

B1 = B-d

B = Anchura de calzada en m

d = Saliente del báculo sobre la calzada en m

En las curvas citadas se obtienen K1 y K2, en función de a y b respectivamente, siendo la utilancia:

$$U = K1 + K2$$

La interdistancia se obtiene de la fórmula:

$$E = \frac{F x Fk x U}{L x B}$$

donde:

E = Nivel de iluminación medio en lux

F = Flujo luminoso útil de la lámpara en volúmenes

Fk = Factor de depreciación

U = Factor de utilización

B = Anchura de la calzada en metros

L = Interdistancia entre luminarias, en metros

Y despejando obtenemos la expresión de la interdistancia:

$$L = \frac{F \times Fk \times U}{E \times B}$$

Se ha diseñado un sistema de alumbrado exterior que se ajusta a la implantación del presente proyecto. La zona de entrada a la parcela e inmediaciones de tratamiento biológico y pretratamiento se iluminan mediante 5 unidades de luminarias LED 100W sobre columnas de acero de 8 metros, y la zona perimetral del nuevo edificio de control mediante 6 unidades de brazos murales adosados a fachada con luminarias de LED de 100W.

9.2 ALUMBRADO INTERIOR

Los cálculos necesarios para el diseño de la iluminación interior se han realizado de acuerdo al siguiente procedimiento:

A partir de las dimensiones del local y de la forma de montaje de las luminarias, se obtiene en primer lugar el índice del local por la fórmula:

$$K = \frac{a \times b}{h (a + b)}$$

donde:

K = Índice del local

A = Longitud

B = Anchura

H = Altura útil de la luminaria (distancia de la luminaria al plano de trabajo)

En función del índice del local, factores de reflexión en techo, paredes y suelo, tipo de luminaria y factor de depreciación, se obtiene el rendimiento lumínico en el local, extraído de las curvas o tablas del fabricante de la luminaria.

A continuación se calcula el flujo luminoso necesario por la fórmula:

$$\phi = \frac{Em \times S}{V \times \mu}$$

donde:

Em = Nivel de iluminación proyectado en lux

S = Superficie del local en metros cuadrados

V = Factor de depreciación de la luminaria

 μ = Rendimiento lumínico

Después se obtiene el número de lámparas necesarias, dividiendo el flujo necesario (ø) por el flujo de la luminaria (ø1).

Por último se calcula el nivel de iluminación resultante en lux (emr), de acuerdo con el número de luminarias realmente proyectadas por necesidades estructurales o arquitectónicas.

Al final del presente anejo se presentan los cálculos Dialux con el diseño lumínico de las salas más importantes del presente proyecto: sala de cuadros eléctricos y sala de futuras soplantes.

APÉNDICE 1.- CÁLCULOS LUMÍNICOS

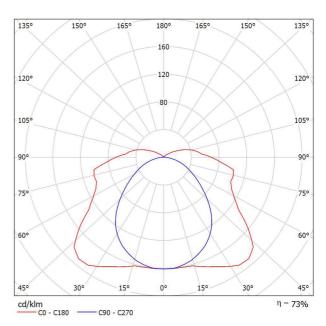
EDAR Valdemaqueda

Estudio lumínico sala soplantes

Fecha: 25.11.2015 Proyecto elaborado por: Nolter

25.11.2015

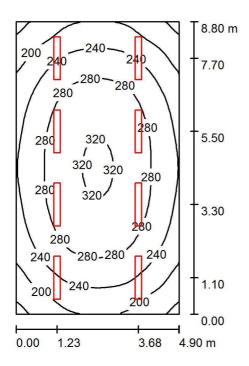
Proyecto elaborado por Teléfono Fax e-Mail


GEWISS GW80005 ZNT - 2x36W FD / Hoja de datos de luminarias

Clasificación luminarias según CIE: 89 Código CIE Flux: 38 68 87 89 73

Plafoniera Stagna Professionale in Policarbonato

Emisión de luz 1:


Emisión de luz 1:

Techo		70	70	50	50	30	70	70	50	50	30
Paredes		50	30	50	30	30	50	30	50	30	30
ρ Suelo		20	20	20	20	20	20	20	20	20	20
Tamaño o	del local Y		Mirado en perpendicular al eje de lámpara			Mirado longitudinalmente al eje de lámpara					
2H	2H	18.0	19.4	18.5	19.8	20.2	15.6	16.9	16.1	17.3	17.
	3H	20.0	21.2	20.5	21.7	22.2	16.8	18.0	17.2	18.4	18.
	4H	21.2	22.4	21.7	22.8	23.4	17.2	18.3	17.7	18.8	19.
	6H	22.6	23.7	23.1	24.2	24.7	17.6	18.6	18.1	19.1	19.
	8H	23.3	24.3	23.8	24.8	25.3	17.7	18.7	18.2	19.2	19.
	12H	23.8	24.8	24.4	25.3	25.9	17.7	18.7	18.3	19.2	19.
4H	2H	18.5	19.7	19.0	20.1	20.6	16.7	17.9	17.2	18.3	18.
	3H	20.8	21.8	21.3	22.3	22.9	18.2	19.1	18.7	19.7	20.
	4H	22.2	23.1	22.8	23.6	24.2	18.8	19.7	19.3	20.2	20
	6H	23.8	24.6	24.4	25.2	25.8	19.3	20.1	19.9	20.6	21
	8H	24.6	25.3	25.2	25.9	26.5	19.5	20.2	20.1	20.8	21
	12H	25.3	25.9	25.9	26.5	27.2	19.6	20.3	20.2	20.9	21
8H	4H	22.5	23.2	23.1	23.8	24.5	19.7	20.4	20.3	21.0	21
	6H	24.4	25.0	25.0	25.6	26.3	20.4	21.1	21.1	21.7	22
	8H	25.3	25.9	26.0	26.5	27.2	20.8	21.3	21.4	21.9	22
	12H	26.2	26.7	26.9	27.3	28.1	21.0	21.5	21.7	22.2	22
12H	4H	22.5	23.2	23.1	23.8	24.5	20.0	20.6	20.6	21.2	21
	6H	24.5	25.0	25.1	25.6	26.3	20.9	21.4	21.5	22.1	22
	8H	25.5	26.0	26.1	26.6	27.3	21.3	21.8	22.0	22.5	23
Porc III Lancours Co. Co. Co.	la posición	del espect			100000000000000000000000000000000000000	luminaria	5				
S = 1).1 / -(0.1 / -0	0.1	
S = 1).2 / -(0.5	
S = 2	.0H		+0).2 / -(0.4	+0.6 / -0.9			0.9		
Tabla es	CERTAIN STATE			BK11					BK14		
Suman				8.8					3.4		

25.11.2015

Proyecto elaborado por Teléfono Fax e-Mail

Sala soplantes / Resumen

Altura del local: 4.000 m, Altura de montaje: 4.000 m, Factor mantenimiento: 0.67

Valores en Lux, Escala 1:114

Superficie	ρ [%]	E _m [lx]	E _{min} [lx]	E _{max} [lx]	E_{min} / E_{m}
Plano útil	1	257	151	324	0.586
Suelo	27	211	141	257	0.666
Techo	27	115	65	266	0.564
Paredes (4)	27	206	101	380	1

Plano útil: UGR Longi- Tran al eje de luminaria

 Altura:
 0.850 m
 Pared izq
 20
 18

 Trama:
 32 x 32 Puntos
 Pared inferior
 22
 18

Zona marginal: 0.000 m (CIE, SHR = 0.25.) Porcentaje de puntos con menos de 400 lx (para IEQ-7): 100.00%.

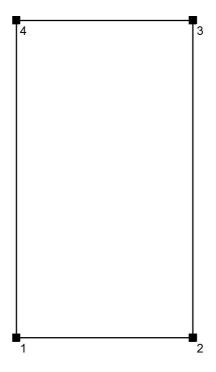
Lista de piezas - Luminarias

N°	Pieza	Designación (Factor de corrección)	Φ (Luminaria) [lm]	Φ (Lámparas) [lm]	P [W]
1	8	GEWISS GW80005 ZNT - 2x36W FD (1.000)	5016	6900	72.0
	•		Total: 40131	Total: 55200	576.0

Valor de eficiencia energética: 13.36 W/m² = 5.20 W/m²/100 lx (Base: 43.12 m²)

25 11 201

Proyecto elaborado por Teléfono Fax e-Mail


Sala soplantes / Protocolo de entrada

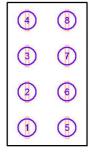
Altura del plano útil: 0.850 m Zona marginal: 0.000 m

Factor mantenimiento: 0.67

Altura del local: 4.000 m

Base: 43.12 m²

Superficie	Rho [%]	desde ([m] [m])	hacia ([m] [m])	Longitud [m]
Suelo	27	1	1	1
Techo	27	1	1	1
Pared 1	27	(0.000 0.000)	(4.900 0.000)	4.900
Pared 2	27	(4.900 0.000)	(4.900 8.800)	8.800
Pared 3	27	(4.900 8.800)	(0.000 8.800)	4.900
Pared 4	27	(0.000 8.800)	(0.000 0.000)	8.800


25 11 2015

Proyecto elaborado por Teléfono Fax e-Mail

Sala soplantes / Luminarias (lista de coordenadas)

GEWISS GW80005 ZNT - 2x36W FD

5016 lm, 72.0 W, 1 x 2 x FD 36W (Factor de corrección 1.000).

N°		Posición [m]			Rotación [°]	
	X	Y	Z	X	Y	Z
1	1.230	1.100	4.000	0.0	0.0	0.0
2	1.230	3.300	4.000	0.0	0.0	0.0
3	1.230	5.500	4.000	0.0	0.0	0.0
4	1.230	7.700	4.000	0.0	0.0	0.0
5	3.680	1.100	4.000	0.0	0.0	0.0
6	3.680	3.300	4.000	0.0	0.0	0.0
7	3.680	5.500	4.000	0.0	0.0	0.0
8	3.680	7.700	4.000	0.0	0.0	0.0

EDAR Valdemaqueda

Estudio lumínico sala cuadros eléctricos

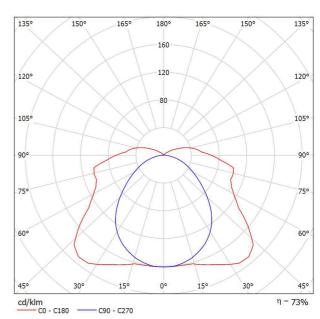
Contacto: N° de encargo: Empresa: N° de cliente:

Fecha: 12.07.2016

Proyecto elaborado por: Nolter

12.07.2016

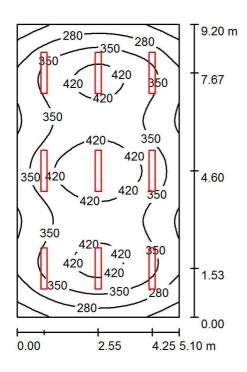
Proyecto elaborado por Teléfono Fax e-Mail


GEWISS GW80005 ZNT - 2x36W FD / Hoja de datos de luminarias

Clasificación luminarias según CIE: 89 Código CIE Flux: 38 68 87 89 73

Plafoniera Stagna Professionale in Policarbonato

Emisión de luz 1:


Emisión de luz 1:

ρ Techo		70	70	50	50	30	70	70	50	50	30
Paredes		50	30	50	30	30	50	30	50	30	30
Suelo	elo 20 20 20 20 20 20 20			20	20	20	20	20			
Tamaño del local X Y		Mirado en perpendicular al eje de lámpara				Mirado longitudinalmente al eje de lámpara					
2H	2H	18.0	19.4	18.5	19.8	20.2	15.6	16.9	16.1	17.3	17.8
	3H	20.0	21.2	20.5	21.7	22.2	16.8	18.0	17.2	18.4	18.9
	4H	21.2	22.4	21.7	22.8	23.4	17.2	18.3	17.7	18.8	19.3
	6H	22.6	23.7	23.1	24.2	24.7	17.6	18.6	18.1	19.1	19.6
	8H	23.3	24.3	23.8	24.8	25.3	17.7	18.7	18.2	19.2	19.7
	12H	23.8	24.8	24.4	25.3	25.9	17.7	18.7	18.3	19.2	19.8
4H	2H	18.5	19.7	19.0	20.1	20.6	16.7	17.9	17.2	18.3	18.8
	3H	20.8	21.8	21.3	22.3	22.9	18.2	19.1	18.7	19.7	20.2
	4H	22.2	23.1	22.8	23.6	24.2	18.8	19.7	19.3	20.2	20.8
	6H	23.8	24.6	24.4	25.2	25.8	19.3	20.1	19.9	20.6	21.3
	8H	24.6	25.3	25.2	25.9	26.5	19.5	20.2	20.1	20.8	21.4
	12H	25.3	25.9	25.9	26.5	27.2	19.6	20.3	20.2	20.9	21.5
8H	4H	22.5	23.2	23.1	23.8	24.5	19.7	20.4	20.3	21.0	21.6
	6H	24.4	25.0	25.0	25.6	26.3	20.4	21.1	21.1	21.7	22.4
	8H	25.3	25.9	26.0	26.5	27.2	20.8	21.3	21.4	21.9	22.7
	12H	26.2	26.7	26.9	27.3	28.1	21.0	21.5	21.7	22.2	22.9
12H	4H	22.5	23.2	23.1	23.8	24.5	20.0	20.6	20.6	21.2	21.9
	6H	24.5	25.0	25.1	25.6	26.3	20.9	21.4	21.5	22.1	22.8
	8H	25.5	26.0	26.1	26.6	27.3	21.3	21.8	22.0	22.5	23.2
Variación de	la posición	del espect	ador para	separacion	nes S entre	luminaria	5				
S = :					0.1			+(0.1	
S = 2	S = 2.0H +0.2 / -0.4					+().6 / -0	0.9			
Tabla es	stándar			BK11					BK14		
Suman	do de			8.8					3.4		
corrección				0.8			l		3.4		

12.07.2016

Proyecto elaborado por Teléfono Fax e-Mail

Sala cuadros elécricos / Resumen

Altura del local: 3.000 m, Altura de montaje: 3.000 m, Factor

mantenimiento: 0.67

Valores en Lux, Escala 1:119

Superficie	ρ [%]	E _m [lx]	E _{min} [lx]	E _{max} [lx]	E_{min} / E_{m}
Plano útil	1	353	175	475	0.495
Suelo	27	287	172	361	0.598
Techo	27	131	67	291	0.507
Paredes (4)	27	252	109	612	1

Plano útil: UGR Longi- Tran al eje de luminaria

 Altura:
 0.850 m
 Pared izq
 22
 20

 Trama:
 32 x 64 Puntos
 Pared inferior
 25
 21

Zona marginal: 0.000 m (CIE, SHR = 0.25.)

Porcentaje de puntos con menos de 400 lx (para IEQ-7): 73.44%.

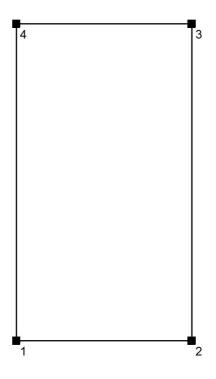
Lista de piezas - Luminarias

N°	Pieza	Designación (Factor de corrección)	Φ (Luminaria) [lm]	Φ (Lámparas) [lm]	P [W]
1	9	GEWISS GW80005 ZNT - 2x36W FD (1.000)	5016	6900	72.0
			Total: 45148	Total: 62100	648.0

Valor de eficiencia energética: 13.81 W/m² = 3.91 W/m²/100 lx (Base: 46.92 m²)

12 07 2016

Proyecto elaborado por Teléfono Fax e-Mail


Sala cuadros elécricos / Protocolo de entrada

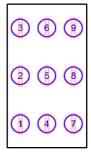
Altura del plano útil: 0.850 m Zona marginal: 0.000 m

Factor mantenimiento: 0.67

Altura del local: 3.000 m

Base: 46.92 m²

Superficie	Rho [%]	desde ([m] [m])	hacia ([m] [m])	Longitud [m]
Suelo	27	1	1	1
Techo	27	1	1	1
Pared 1	27	(0.000 0.000)	(5.100 0.000)	5.100
Pared 2	27	(5.100 0.000)	(5.100 9.200)	9.200
Pared 3	27	(5.100 9.200)	(0.000 9.200)	5.100
Pared 4	27	(0.000 9.200)	(0.000 0.000)	9.200


12 07 2016

Proyecto elaborado por Teléfono Fax e-Mail

Sala cuadros elécricos / Luminarias (lista de coordenadas)

GEWISS GW80005 ZNT - 2x36W FD

5016 lm, 72.0 W, 1 x 2 x FD 36W (Factor de corrección 1.000).

N°		Posición [m]	m] Rotación		Rotación [°]	۱ [°]	
	X	Y	Z	X	Y	Z	
1	0.850	1.530	3.000	0.0	0.0	0.0	
2	0.850	4.600	3.000	0.0	0.0	0.0	
3	0.850	7.670	3.000	0.0	0.0	0.0	
4	2.550	1.530	3.000	0.0	0.0	0.0	
5	2.550	4.600	3.000	0.0	0.0	0.0	
6	2.550	7.670	3.000	0.0	0.0	0.0	
7	4.250	1.530	3.000	0.0	0.0	0.0	
8	4.250	4.600	3.000	0.0	0.0	0.0	
9	4.250	7.670	3.000	0.0	0.0	0.0	

				7		
	\sim NIO \sim	INIOTE			Y CONTRO	
Δ NI \vdash 1	() NIU X	_ INIS I	? I I I//I I— IN I	1 A(1()N	A (JUNIEL)	
	OIN O.	- 114011	/ CIVILIA	IACIOI		_

ANEJO № 8.- INSTRUMENTACIÓN Y CONTROL INDICE

1	INTRO	ICCIÓN AL SISTEMA DE CONTROL DE LA MEJORA DE LA EDAR 1					
2	INSTR	IENTACIÓN2					
3	CONT	L DEL PROCESO2					
	3.1	AUTÓMATA PROGRAMABLE (PLC)2					
	3.2	VISUALIZACIÓN LOCAL5					
	3.3	CARACTERÍSTICAS GENERALES DEL CABLE DE INSTRUMENTACIÓN 6					
	3.4	PROTECCIÓN Y SEPARACIÓN GALVÁNICA6					
	3.5	CONDICIONES DE INSTALACIÓN EN INTEMPERIE6					
4	AUTO	TIZACIÓN 7					
	4.1	MANDO DE LA PLANTA7					
	4.2	ALGORITMOS DE CONTROL8					
	4.3	AUTÓMATAS PROGRAMABLES10					
		4.3.1 CONFIGURACIÓN HARDWARE10					
		4.3.2 ARMARIOS10					
		4.3.3 COMUNICACIÓN MEDIANTE RED DE PROCESO10					
	4.4	CARACTERÍSTICAS TÉCNICAS DE LOS AUTÓMATAS PROGRAMABLES 11					
5	SUPE	SIÓN12					
	5.1	SOFTWARE DE SUPERVISIÓN12					
	5.2	SEGURIDAD DE LOS DATOS13					
	5.3	SISTEMA DE DESARROLLO13					
6	ELEM	TOS AUXILIARES13					
	6.1	PROTECCIONES13					
	6.2	VARIADORES DE VELOCIDAD Y ARRANCADORES ESTÁTICOS15					

1.-INTRODUCCIÓN AL SISTEMA DE CONTROL DE LA MEJORA DE LA EDAR

En la actualidad la planta depuradora dispone de una automatización completa de sus instalaciones, que gestiona el funcionamiento autónomo de los procesos tanto de depuración como de gestión energética.

En concreto, existe un PLC de control encargado del proceso y un PLC para instrumentación ubicados ambos en el pequeño edificio de servicios junto a la entrada de la planta; y otro PLC de gestión energética encargado de las variables eléctricas del sistema fotovoltaico, en la cámara bajo el tratamiento biológico.

PLC Control Proceso (izquierda) y PLC Instrumentación (derecha), en edificio de servicios.

PLC control energético, bajo tratamiento biológico.

En este proyecto, se sustituirán los PLC de control e instrumentación por otro Cuadro de Control, según ET 4102, asociado al nuevo Cuadro General de Baja Tensión. El PLC de gestión energética será desmantelado, puesto que se elimina el sistema de

alimentación mediante placas solares. Toda la instrumentación actual y el cuadro de control de tratamiento biológico por biodiscos serán conectados al nuevo PLC, de tal forma que todo quede integrado en un único sistema de control.

El seguimiento, control y proceso de la EDAR estará gobernado por el autómata programable citado anteriormente, que recogerá el estado de las señales digitales y analógicas procedentes de los equipos e instrumentos de la planta, procesará las instrucciones de acuerdo con lo establecido en el programa de usuario y generará las salidas de proceso adecuadas.

El autómata programable trabajará en forma de inteligencia distribuida, es decir, que lo hará de forma autónoma, aun con falta de comunicación con cualquiera de los demás elementos de la Red. Asimismo, el autómata programable debe disponer de la memoria necesaria para las lógicas de funcionamiento, más un archivo de datos, analógicos y digitales, por un tiempo mínimo de 72 horas, más un 25% de reserva.

2.-INSTRUMENTACIÓN

Las obras de mejora de instalaciones eléctricas del presente proyecto no contemplan nuevos procesos de tratamiento que pudieran requerir automatismo, ni renovación de instrumentación existente.

Por tanto en este apartado, cabe señalar que se procederá a la migración de toda la instrumentación existente del proceso actual al nuevo PLC (control de caudal de agua tratada, control de niveles analógicos en decantación y tratamiento biológico, etc.), para que sea éste el que gestione toda la información.

Se contempla en presupuesto el cableado necesario para migrar el destino de las señales de los medidores actuales al nuevo PLC.

3.-CONTROL DEL PROCESO

3.1 AUTÓMATA PROGRAMABLE (PLC)

Se ajustará a lo especificado en la ficha técnica ET 4102.

El seguimiento, control y proceso de la Estación de Tratamiento de Agua Residual estará distribuido y gobernado por autómatas programables, uno asociado a cada centro de control de motores. Será precisa la instalación de un autómata para el nuevo CGBT previsto.

Los autómatas recogerán el estado de las señales digitales y analógicas procedentes de los equipos e instrumentos de la planta, procesará las instrucciones de acuerdo con lo establecido en el programa de usuario, y generará las salidas del proceso, la señalización de la toma de datos para el seguimiento del proceso, y la gestión de toda la información obtenida.

El diseño de este sistema de control se ha limitado a las instalaciones de mejora proyectadas. Será fácilmente ampliable a futuro, cuando se requiera más capacidad de entradas y salidas de proceso para la ampliación prevista.

El autómata programable proyectado irá instalado en un armario metálico de doble cuerpo (800 + 800 mm.) con dos puertas, con capacidad suficiente para alojar todos los elementos. Una de las puertas será transparente para poder observar y controlar visualmente desde el exterior el funcionamiento de sus elementos, y la otra será ciega. En el interior del otro cuerpo se instalarán las protecciones, interruptores, fuentes de alimentación, relés de protección de señales, sistemas de alimentación ininterrumpida, elementos de conexión a la red de comunicaciones, etc. El armario es descrito con más detalle en apartado posterior.

El autómata trabajará en forma de inteligencia distribuida de forma autónoma, aún con falta de comunicación con cualquiera de los demás elementos de la red. El autómata programable debe disponer de la memoria necesaria para las lógicas de funcionamiento, más un archivo de datos, analógicos y digitales, para un tiempo mínimo de 72 horas, más un 25% de reserva.

El PLC dispondrá de un sistema de alimentación ininterrumpida dimensionado suficientemente para garantizar el funcionamiento correcto para cortes de suministro de la red durante una hora de duración.

A continuación se adjuntan tablas en las que se puede observar la configuración del PLC asociado al Cuadro General de Baja Tensión:

CONFIGURACIÓN CPU

DESCRIPCIÓN PLC1

CPU 2560 E/S 60 Kpasos 160KW RS232 ETN / IP	1
fuente alimentación 220 AC, cap. 2.8 A	1
Módulo comunicaciones RS232C + RS422/485	1
Módulo Ethernet RJ45 10/100 BaseT	1
Módulo 64 entradas digitales 2xconector MIL	3
Módulo 32 salidas digitales	1
Módulo 8 entradas analógicas	1
Módulo 4 salidas analógicas	3

ED	192
SD	32
EA	8
SA	12

Pperif	1
RS232	2
RS422	1
Ethernet	1

Bastidores:	1
Fuentes:	1

5 DC	2,8000		
Consumo:	2,65		
	•		
24 DC	0,4000		

Total (W)	13,250

0,0000

Consumo:

Conectores:

INTERFACES-CABLES-BORNEROS

64 E	D	
	CNTOR-PNTERAS	0
1	CNTOR-INTFACE	6
		6
32 S	D	
1	CNTOR-INTFACE	1
		2
		32

El dimensionamiento de tarjetas se ha realizado con el número de entradas/salidas digitales y analógicas que provienen de cada cuerpo del CCM, según las cargas asociadas, sus tipos de arranque y la instrumentación asociada a cada proceso. El autómata recibe o envía ese número de señales correspondientes a los actuadores e instrumentación asociada. En función de la cantidad de señales y del tipo de tarjeta al que se conectan, se calcula el número necesario, teniendo en cuenta el espacio de reserva necesario.

Se ha estimado necesario el siguiente número de entradas y salidas. Dicho número será orientativo a la hora de cuantificar la configuración de tarjetas, y no está incrementado por previsiones de reserva:

	E/D	S/D	E/A	S/A
PLC1	108	19	2	8

NOTA: se han considerado las entradas de instrumentación existente.

Si aplicamos una reserva del 25%, obtenemos los siguientes datos para dimensionar los módulos de E/S, y finalmente la capacidad diseñada:

	E/D	S/D	E/A	S/A
PLC1	135	24	3	10
Capacidad				
diseñada	192	32	8	12

	NÚMERO DE TARJETAS					
	64 E/D 32 S/D 8 E/A 4 S/A TOTALE					
PLC1	3	1	1	3	8	

3.2 VISUALIZACIÓN LOCAL

En el armario del PLC del nuevo Cuadro General de Baja Tensión será instalado un terminal HMI de visualización de las siguientes características:

- Teclado de burbuja.
- Pantalla tipo LCD.

- Utilidades gráficas incorporadas.
- Sistema Windows CE o equivalente.
- Software de supervisión de 300 tags.

El panel debe integrarse en la red de control a través de un puerto Ethernet.

3.3 CARACTERÍSTICAS GENERALES DEL CABLE DE INSTRUMENTACIÓN.

Corresponderá a la denominación RC4Z1-K 0,6/1 kV según UNE 21123-2, y estará formado por varios conductores de cobre flexible clase 5, según UNE 21022.

Dispondrán de pantalla contra interferencias externas, formada por trenza de hilos de cobre electrolítico recocido, aislamiento de polietileno reticulado (XLPE) de 0,7 mm de espesor y cubierta de PVC.

3.4 PROTECCIÓN Y SEPARACIÓN GALVÁNICA

Todos los cables de señal de medidores serán provistos de separación mediante elementos activos con circuitos de entrada y salida independiente y fuente de alimentación única para ambas partes.

La alimentación de los equipos de control (automatización, instrumentación y supervisión) serán protegidos mediante descargadores a ambos lados de un transformador de aislamiento 1/1.

3.5 CONDICIONES DE INSTALACIÓN EN INTEMPERIE

Armarios: Todo equipo que no cumpla con el grado de protección IP67 será instalado dentro de un armario estanco. Dicho armario dispondrá de una ventana de metacrilato sobre la puerta.

Soportes: todos los equipos instalados en el exterior se montarán en soportes con tejadillo del tipo CANAL GESTIÓN.

Protección eléctrica: todo equipo dispondrá de un elemento de protección y seccionamiento bipolar de tipo magnetotérmico instalado en el interior del armario del PLC.

4.- AUTOMATIZACIÓN

Como se ha comentado, se instalarán controladores de proceso que se encargará de los equipos de la planta. A continuación se describen sus características generales.

Los algoritmos de control a programar para automatizar procesos se ceñirán a los que éste proyecto concierne, y son descritos a continuación en el apartado 4.2.

4.1 MANDO DE LA PLANTA

Sistema manual

Ordenes locales de puesta en funcionamiento sin intervención posible de enclavamiento alguno, excepto de los de protección de máquina.

Sistema redundante

Para el funcionamiento en caso de fallo del autómata. Se conecta automáticamente ante un fallo de éste, y devolverá el control al Autómata Programable cuando se restaure el fallo.

Sistema manual desde la pantalla

Su actuación es idéntica a la de tipo manual de campo. Es decir, los únicos enclavamientos que le afectan son las protecciones propias de cada máquina.

Sistema automático

Bajo el control total del autómata. Todos los enclavamientos que intervienen son lógicos (excepto protecciones).

Un lazo de maniobra común y obligatorio a todas las máquinas de proceso controladas automáticamente será el establecido por botonera de arranque instalada a pie de máquina, que permitirá:

- o Arranque manual
- o Propuesta a la orden del control para funcionamiento automático.
- o Parada desde la botonera que impida el arranque automático desde el control

central.

o Parada de emergencia (seta-emergencia)

Señales de control

El autómata programable constará de las siguientes señales:

Por máquina: estado de funcionamiento, fallo, automático. Orden de marcha.

Protecciones redundantes: detectores de nivel de seguridad redundantes para condiciones de seguridad (máximo y/o mínimo de seguridad), aunque exista una medida en continuo. Otras alarmas críticas para el funcionamiento de la estación.

Medidores: señal analógica de 4 a 20 mA. Impulsos de totalización mediante tarjeta contadora de impulsos.

Salidas analógicas: hacia compuertas o válvulas motorizadas, variadores de frecuencia, etc.

4.2 ALGORITMOS DE CONTROL

Se pretende mejorar el proceso de tratamiento del agua, integrando la automatización de los procesos a mejorar, tales como:

- o Tamizado de sólidos
- o Sistema de tratamiento biológico

Métodos de control

Tamizado de sólidos

Modos de operación: manual/automático seleccionable por conmutador situado en Centro de Control Motores.

Funcionamiento:

- o Modo manual: por botonera
- Modo automático: por diferencia de nivel, ciclos temporizados parametrizables. Sincronizado con prensa hidráulica

Registro de datos:

- Tiempo de funcionamiento
- o Alarmas de fallo
- o Alarmas de nivel

Sistema de tratamiento biológico

Modos de operación: manual/automático seleccionable en programa de control

Funcionamiento:

- o Modo manual: por botonera, por programa
- o Modo automático: según estándar del fabricante
- Control de tiempo de aireación: se controla mediante variador de frecuencia que regula la velocidad de rotación del biodisco y así el tiempo de exposición con el aire. Controlado según parámetros medidos en agua.
- Bombeo de fangos: controladas mediante sensores de nivel y consignas de alternancia de bombas.

Registro de datos:

- o Tiempo de funcionamiento de todos los equipos
- o Alarmas de fallo, errores
- o Indicación de caudal y niveles
- o Posición de variador de tambor de rotación

Instalación eléctrica

Setas de emergencia: detendrán cada equipo asociado.

4.3 AUTÓMATAS PROGRAMABLES

4.3.1 CONFIGURACIÓN HARDWARE

Como ya ha quedado comentado anteriormente, se dispondrá de una nueva extensión remota de autómata programable y varias ampliaciones en bastidor de autómatas existentes para las instalaciones de mejora de la planta.

Como ya ha quedado comentado anteriormente, se dispondrá de un autómata programable para el control de toda la planta así como la instalación de una pantalla táctil para visualización de proceso y control de programa SCADA.

4.3.2 ARMARIOS

Cada autómata se instalará dentro de un armario de doble cuerpo. Dicho armario dispondrá de una ventana de metacrilato sobre la puerta para la visualización de los correspondientes leds. En el interior del otro cuerpo se instalarán las protecciones, interruptores, fuentes de alimentación, relés de protección de señales, etc. El cableado de entradas y salidas se realizará mediante cables multipolares prefabricados con conectores en ambos extremos. Los elementos de interfaz serán unidades modulares con conexión para el cable multipolar en un extremo y bornas de presión por tornillo en el otro. En el caso de las salidas digitales, estos módulos incorporarán un relé separador por salida. El interfaz de las entradas se realizará mediante relés convencionales.

El armario dispondrá de extractor con filtro y elemento calefactor.

Todas las entradas digitales se alimentarán de una fuente de alimentación de potencia superior al 30% del consumo nominal requerido. Esta fuente estará basada en tecnología de conmutación e incorporará un filtro reductor de armónicos a la salida, así como elementos de protección de naturaleza electrónica por cortocircuito y/o sobrecarga.

4.3.3 COMUNICACIÓN MEDIANTE RED DE PROCESO

Configuración

Se realizará una nueva red Ethernet industrial, en la que irán interconexionados todos los PLC's, paneles de operación, analizadores de redes, etc. A través de Switches se

conectará a futuro con los PC's de supervisión, gestión, pantallas de visualización local, etc. Que se instalen en la siguiente fase de ampliación de la EDAR.

Soporte

El soporte de transmisión - recepción será de par trenzado de cobre (RS-485). El cable tendrá protección antiroedor y con al menos dos hilos de reserva totalmente preparados para su uso. En el interior de cada armario de PLC se instalarán cajas de conexiones.

Redundancia

Al existir un único PLC, no es posible definir una arquitectura de red de comunicaciones.

4.4 CARACTERÍSTICAS TÉCNICAS DE LOS AUTÓMATAS PROGRAMABLES

Todos los procesadores tendrán estructura multiprocesador alrededor de un bus de datos de 16 bits.

La ejecución de las instrucciones se realizará en un circuito tipo ASIC (Application Specific Integrated Circuit), para el cálculo de las instrucciones Ladder del programa.

Los microprocesadores realizarán todas las tareas de gestión de las comunicaciones con la red y entradas-salidas remotas, así como la gestión del puerto RS-232/422 y Ethernet integrado en la CPU.

Los procesadores soportarán de 1 a 10 puertos de comunicación y la red local para comunicaciones.

Con soporte físico de cable twinaxial, la red permitirá conectar hasta 64 nodos a distancias de hasta 3.000 m sin necesidad de repetidores, en topologías con bus o daisy-chain.

La red permitirá el uso de bridges y switches de comunicación con otras redes tipo DH, locales y/o remotas.

Características principales:

o 3.000 m.

- o Distancia libre entre nodos (no forzada)
- Cable, fibra óptica o combinación de cable y fibra óptica
- o Hasta 230.000 baudios.
- o 64 nodos
- o Red tipo ETHERNET
- o El protocolo podrá ser utilizado con múltiples protocolos de comunicación:
 - TCP/IP (redes Ethernet)
 - Tipo DH
 - Full-Duplex (enlaces serie punto-punto)
 - Half-Duplex (enlaces serie multi-punto)
 - Para la conexión al sistema de telecontrol serán previstos routers adecuados.

5.-SUPERVISIÓN

Se prevé únicamente la supervisión del sistema de control mediante la pantalla táctil HMI a instalar en el mismo armario del PLC.

A futuro, cuando se amplíe la planta, se proyectará el equipamiento para una sala de control con ordenador y pantalla de visualización de proceso.

5.1 SOFTWARE DE SUPERVISIÓN

El paquete de supervisión ofrecerá como mínimo:

- Arquitectura cliente/servidor
- Enlaces DDE, OLE y DLL
- Tratamiento de recetas
- Tratamiento de gráficos vectoriales y bitmap
- Protocolos estándar de las principales marcas de PLC's

La aplicación de supervisión contará con las siguientes utilidades como mínimo:

Gráficas de proceso

- Curvas de tendencia en tiempo real
- Alarmas en tiempo real
- Tratamiento de datos históricos (datos, alarmas, etc.)
- Seguridad: claves y niveles de acceso
- Generación de informes diario, semanales, mensuales.
- Cálculos
- Contadores de horas de funcionamiento
- Contadores de número de maniobras.
- Totalizadores.
- Información sobre variables
- Situación energética de la planta
- Modificación de rangos de señales analógicas.

5.2 SEGURIDAD DE LOS DATOS

Se instalará un sistema de salvado periódico de datos.

5.3 SISTEMA DE DESARROLLO

Una vez acabada la obra, se entregará a CANAL GESTIÓN la licencia, documentación, programas de desarrollo y copias de seguridad en formato digital de todo el software utilizado para las instalaciones de mejora. Será de características homogéneas a los actualmente existentes en el Departamento de Depuración.

Durante el transcurso de la obra la dirección de obra de Canal de Isabel II Gestión S.A. notificará la forma de licenciar los distintos programas. Todos los programas serán de características homogéneas a los instalados actualmente en el Departamento de Construcciones de Saneamiento.

6.-ELEMENTOS AUXILIARES

6.1 PROTECCIONES

Para la selección de las protecciones se considerarán las opciones que, de acuerdo con las características de conexión de los equipos, simplifiquen su integración con el consiguiente ahorro en instalación y mano de obra. De igual forma, pensando en

facilitar el mantenimiento y minimizar el número de tipos diferentes necesarios, se han elegido soluciones comunes de probada validez.

La protección eficaz de la instalación requiere la acertada selección de las protecciones necesarias, así como su correcta instalación. Se presentará, previamente a la instalación de la aparamenta, un estudio detallado de las protecciones a instalar, indicando puntos de instalación, marcas, modelos y tipos seleccionados. El fabricante de dicha aparamenta extenderá un certificado aprobando la protección proyectada de acuerdo a la especificación establecida en este proyecto.

Para la selección de las protecciones contra sobretensiones más idóneas para esta instalación, se tendrán en cuenta las siguientes posibles vías de entrada de sobretensiones.

- o Red de alimentación en M.T. y B.T.
- Buses de comunicaciones
- Señales de sensores

En la Estación Depuradora objeto del proyecto se distinguirán en general 3 zonas:

o **Zona 0**:

Centro de transformación

o **Zona 1**:

 Armarios principales de distribución y armarios de centro de control de motores.

o Zona 2:

Cuadros secundarios, armarios de equipos de control y pupitres de control

Los tres niveles de protección a considerar son:

- Protección basta
- o Protección media
- Protección fina de equipos

En cada zona se realizará la compensación de potencial. Las puestas a tierra de equipos, partes metálicas de la instalación y protecciones contra sobretensiones se conectarán a la barra de compensación de potencial.

Para equipos electrónicos (caso más desfavorable) la tensión residual será inferior a 1500 V con respecto a tierra.

6.2 VARIADORES DE VELOCIDAD Y ARRANCADORES ESTÁTICOS

Cumplirán con lo especificado en las fichas técnicas (E.T. 3422, E.T. 3423 y E.T. 3424).

Se instalarán variadores de velocidad electrónicos al menos en los siguientes casos:

- o Dosificación de reactivos
- o En centrífugas cuando no lo incorporen
- En aquellos equipos cuyo par de arranque más desfavorable no pueda ser resuelto mediante arrancador estático

En <u>ningún caso</u> se utilizará un único convertidor para dos o más motores.

Se instalarán arrancadores electrónicos en motores de potencia entre 10 y 18,5KW y arrancadores estáticos en motores de potencia superior a 18,5 kW

Características técnicas:

Grado de protección para convertidores.

- o IP54 para montaje en pared
- o IP20 para montaje en cuadro

Refrigeración mediante intercambiador de calor aire - aire (convertidores).

Conmutación mediante transistores IGBT.

Niveles de emisión RFI por debajo de la norma BS en 50081-2.

Adaptación a normas sobre compatibilidad electromagnética según E50082-2 1992.

Seguridad para las personas según EN 61010-1 1993, con protección de terminales y circuitos en evitación de contactos accidentales.

Inmunidad a microcortes de energía en la red.

Frecuencia de modulación 16 kHz

Unidad de programación con visualizador incorporado

Red de comunicación RIO y/o Device Net

Protecciones de motor incorporadas:

- o Modelo térmico del motor
- o Fallo a tierra
- o Termistor PTC
- Descompensación de corriente entre fases
- o Protección de calado
- o Protección de fallo a tierra
- o Cortocircuito a tierra
- o Fallo de alimentación
- Sobre voltaje red
- Bajo voltaje red
- Método de control vectorial del flujo (convertidores)

Instalación de los convertidores y arrancadores

Se instalarán protecciones de tipo magnetotérmico aguas arriba de los equipos electrónicos. Para la alimentación de los motores desde estos equipos se utilizará cable apantallado.

Los convertidores y los arrancadores estáticos proyectados para los motores que lo requieran del C.C.M. proyectado se ubicarán en el exterior de los mismos. El grado de protección será IP 54.

Los displays de control y visualización se instalarán en la parte frontal del cubículo correspondiente del C.C.M., mecanizando el panel. Si no fuera posible respetar la longitud máxima de separación del visualizador con su equipo asociado se instalarán módulos repetidores.

ANE IO	NIO O	TD A 7		Y REPL	ANTEO
ANEJU	Nº 9	IRAZ	AIJU	YKFPI	ANIFO

ANEJO Nº 9.- TRAZADO Y REPLANTEO INDICE

1	INTRO	ODUCCIÓN	1
2	TRAZ	ZADO	1
	2.1	DEFINICIÓN DE SECCIONES	3
3	REPL	_ANTEO DE LA LÍNEA ELÉCTRICA	8



1.-INTRODUCCIÓN

El presente Anejo tiene por objeto definir el trazado de la línea eléctrica desde el punto de enganche hasta la E.D.A.R. Se compone de una descripción de la traza que se acompaña con el listado de puntos de coordenadas.

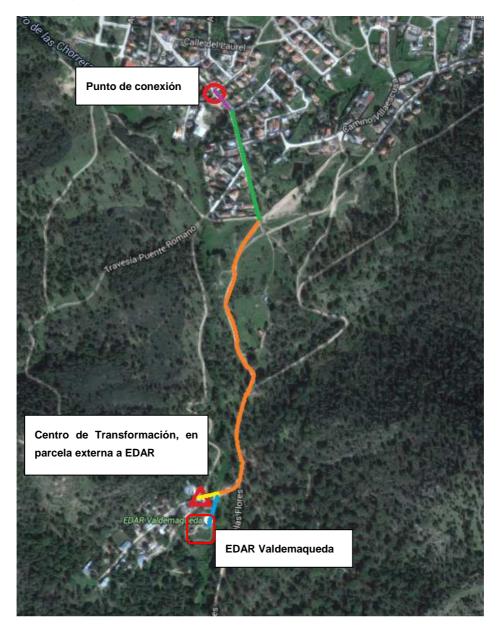
2.-TRAZADO

El trazado de la línea eléctrica subterránea discurre, desde el punto de conexión, por trazado urbano y camino de tierra. Recorre la Avenida Puente Romano -desde el cruce con la Calle Acacias- hacia el sur hasta llegar al límite urbanizado, continuando por el Camino a Villaescusa hasta la planta depuradora. A continuación se describe el trazado en detalle.

Trazado de LSMT. En color verde tramo de compañía (media tensión) y en amarillo tramo mixto compañía/abonado (baja tensión). El CT se sitúa en el límite entre ambos tramos

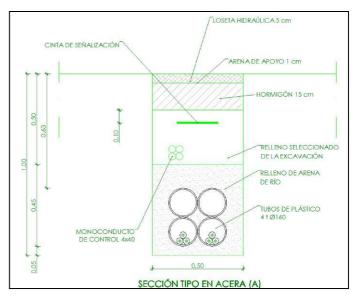
La conexión se realiza sobre la propia línea de media tensión existente de la compañía distribuidora, en la Avenida Puente Romano a la altura del cruce con la calle Acacias. El punto de entronque se realiza en subterráneo, mediante una arqueta de conexión de 1,3m de largo por 1m de ancho, con tapa y marco metálico MMC/TMC normalizados por Iberdrola. Desde éste, arranca la canalización subterránea de 4 tubos PEAD Ø160 que conduce el doble circuito eléctrico de media tensión, bajo acera en su primer tramo.

Tras los primeros 40 metros bajo acera, la conducción pasa al vial pavimentado de hormigón, debido a que las aceras existentes no tienen suficiente anchura. Al final de la avenida Puente Romano, acaba el pavimento hormigonado, y trazado continúa por el camino de tierras con dirección a Villaescusa. Tras recorrer aproximadamente 830 ml por este camino, llega hasta las parcelas del "polígono ganadero" cercanas a la EDAR, donde se ubicará el Centro de Transformación. Hasta este punto, la línea eléctrica será propiedad de la compañía distribuidora.


Desde el Centro de Transformación, comienza el tramo en baja tensión, continuando la traza hasta la planta depuradora.

2.1 DEFINICIÓN DE SECCIONES

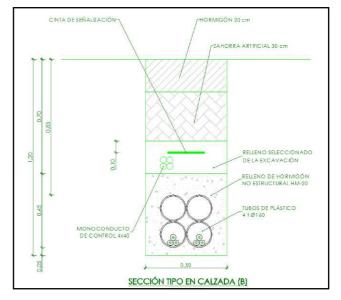
Las secciones tipo varían en función del tramo considerado:


1.- Trazado Compañía por casco urbano bajo acera, desde punto de enganche durante los primeros 38 ml (tramo morado imagen anterior):

La sección tipo, tal y como se muestra a continuación, con 4 conducciones de PEAD de diámetro 160 mm colocados en dos alturas y tetratubo de comunicaciones, consta de una zanja de 1,00 m de profundidad y 0,50 m de anchura. Los conductos se colocarán sobre una cama de arena de río de 5 cm de espesor quedando rellena la

zanja con esta arena de río hasta 13 cm por encima de la generatriz superior de los tubos. Dos de los tubos quedarán utilizados por ambos circuitos de entrada y salida, y otros dos en reserva.

Sobre el relleno de arena se colocarán los 4 monoconductos de control de 4 cm de diámetro colocados en dos alturas de dos tubos cada una. Posteriormente la zanja se rellenará con el material procedente de la excavación para finalizar con la capa de pavimento compuesta por la base de hormigón, bajo la cual a 10 cms se sitúa la cinta de

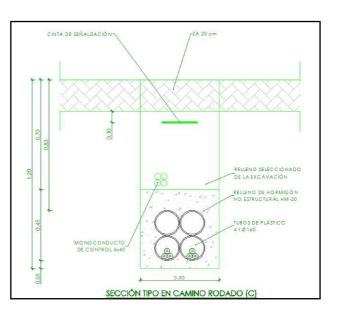

señalización y como acabado superficial la loseta hidráulica.

2.- Trazado Compañía por casco urbano bajo calzada, 290 ml, a continuación del tramo inicial bajo acera (tramo verde imagen anterior):

La sección tipo, tal y como se muestra a continuación, con 4 conducciones de PEAD de diámetro 160 mm colocados en dos alturas y tetratubo de comunicaciones, consta de una zanja de 1,20 m de profundidad y 0,50 m de anchura. Los conductos se colocarán sobre una base de hormigón de 5 cm de espesor dejándolos embebidos en un dado de hormigón en masa de dimensiones 0,45 x 0,50 m. Dos de los tubos

quedarán utilizados por ambos circuitos de entrada y salida, y otros dos en reserva.

Sobre el dado de hormigón se colocarán los 4 monoconductos de control de 4 cm de diámetro colocados en dos alturas de dos tubos cada una. Posteriormente la zanja se rellenará con el material procedente de la excavación para

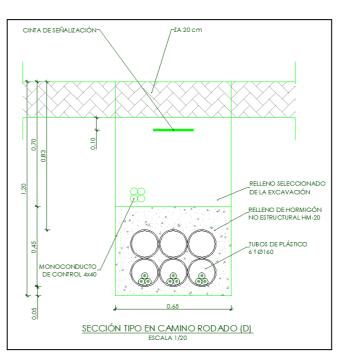


finalizar con los 50 cm de capa de firme, colocando la cinta de señalización eléctrica 10 cm por debajo de ésta.

3.- Trazado Compañía por camino rodado en tierras, de 780ml, desde el pavimento hormigonado hasta desvío a la EDAR (tras pasar el puente del arroyo Rodajos) (tramo naranja imagen anterior):

La sección tipo, tal y como se muestra a continuación, con 4 conducciones de PEAD de diámetro 160 mm colocados en dos alturas y tetratubo de comunicaciones, consta de una zanja de 1,20 m de profundidad y 0,50 m de anchura. Los conductos se colocarán sobre una base de hormigón de 5 cm de espesor dejándolos embebidos en un dado de hormigón en masa de dimensiones 0,45 x 0,50 m. Dos de los tubos quedarán utilizados por ambos circuitos de entrada y salida al CT, y otros dos en reserva.

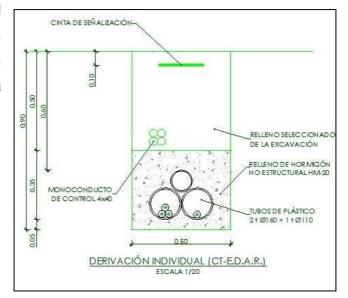
Sobre el dado de hormigón se colocarán los 4 monoconductos de control de 4 cm de diámetro colocados en dos alturas de dos tubos cada una. Posteriormente la zanja se rellenará con el material procedente de la excavación para finalizar con los 20 cm de capa de firme, en este caso en el camino de Zahorras, colocando la cinta de señalización eléctrica 10 cm por debajo de ésta.


4.- Trazado Compañía por camino rodado en tierras, mixto alta y baja tensión, de 60ml, desde desvío a la EDAR hasta centro de Transformación (tramo amarillo imagen anterior):

La sección tipo, tal y como se muestra a continuación, con 6 conducciones de PEAD de diámetro 160 mm colocados en dos alturas y tetratubo de comunicaciones, consta de una zanja de 1,20 m de profundidad y 0,65 m de anchura. Los conductos se colocarán sobre una base de hormigón de 5 cm de espesor dejándolos embebidos en un dado de hormigón en masa de dimensiones 0,50 x 0,65 m. Dos de los tubos

quedarán utilizados por ambos circuitos de entrada y salida al CT en alta tensión, otro se utiliza para el circuito de alimentación a la EDAR en baja tensión, y otros tres en reserva.

Sobre el dado de hormigón se colocarán los 4 monoconductos de control de 4 cm de diámetro colocados en dos alturas de dos tubos cada una. Posteriormente la zanja rellenará material con el procedente de la excavación para finalizar con los 20 cm de capa de firme, en este caso en el camino de Zahorras. colocando cinta la de señalización eléctrica 10 cm por debajo de ésta


5.- Trazado Compañía y Abonado en baja tensión por camino rodado en tierras, desde desvío hasta planta depuradora (tramo azul imagen anterior):

La sección tipo, tal y como se muestra a continuación, con 3 conducciones de PEAD, 2 de diámetro 160mm y 1 de diámetro 110mm, colocados en forma piramidal a dos alturas (2 de 160 mm debajo y 1 de 110 mm arriba centrado en los inferiores) y tetratubo de comunicaciones, consta de una zanja de 0,90 m de profundidad y 0,50 m de anchura. Los conductos se colocarán sobre una base de hormigón de 5 cm de espesor dejándolos embebidos en un dado de hormigón en masa de dimensiones 0,40 x 0,50 m. Uno de los tubos de 160mm se utiliza para el circuito de BT (línea de distribución y derivación individual) y los otros en estado reserva. Este tramo posee dos tipos de propiedad, hasta el cuadro de protección y medida en la puerta de la EDAR será de Compañía, y desde ahí hasta el Cuadro General de BT en el interior de la EDAR, será de abonado.

Sobre el dado de hormigón se colocarán 4 monoconductos de control de 4cm de diámetro colocados en dos alturas de dos tubos cada una. Posteriormente la zanja se

rellenará con el material procedente de la excavación colocando la cinta de señalización eléctrica 10 cm por debajo de la capa de firme.

3.-REPLANTEO DE LA LÍNEA ELÉCTRICA

A continuación se detallan los puntos del eje del trazado, los cuales quedan detallados en los **Planos LE** "*Trazado Línea Eléctrica*" (LE-01 y siguientes) del *Documento* $n^{o}2.-Planos$ de este Proyecto:

Tipo	P.K.	Coord. X	Coord. Y	Azimut	Radio	Parámetro	Longitud
Rec	0,00	389747,03	4484032,42	164,71	0,00	0,00	3,46
Rec	3,46	389748,85	4484029,48	67,60	0,00	0,00	33,00
Rec	36,46	389777,67	4484045,56	80,25	0,00	0,00	15,39
Rec	51,85	389792,33	4484050,26	73,51	0,00	0,00	17,88
Rec	69,73	389808,69	4484057,48	59,83	0,00	0,00	17,80
Rec	87,54	389823,06	4484067,99	48,33	0,00	0,00	37,57
Rec	125,10	389848,92	4484095,24	2,43	0,00	0,00	36,00
Rec	161,11	389850,29	4484131,22	397,03	0,00	0,00	13,12
Rec	174,23	389849,68	4484144,33	382,52	0,00	0,00	39,79
Rec	214,02	389838,89	4484182,62	6,78	0,00	0,00	23,52
Rec	237,54	389841,39	4484206,01	14,28	0,00	0,00	71,80
Rec	309,34	389857,37	4484276,01	18,54	0,00	0,00	36,96
Rec	346,30	389867,98	4484311,41	40,13	0,00	0,00	33,38
Rec	379,68	389887,66	4484338,38	390,08	0,00	0,00	11,30
Rec	390,98	389885,91	4484349,54	363,76	0,00	0,00	45,70
Rec	436,68	389861,28	4484388,03	371,56	0,00	0,00	31,41
Rec	468,09	389847,70	4484416,36	367,90	0,00	0,00	11,06
Rec	479,15	389842,36	4484426,04	387,55	0,00	0,00	11,95
Rec	491,10	389840,04	4484437,76	395,76	0,00	0,00	20,06
Rec	511,16	389838,70	4484457,77	380,64	0,00	0,00	35,35
Rec	546,50	389828,12	4484491,50	377,83	0,00	0,00	36,74
Rec	583,24	389815,58	4484526,03	397,61	0,00	0,00	16,06
Rec	599,30	389814,98	4484542,08	12,52	0,00	0,00	10,88
Rec	610,19	389817,10	4484552,76	20,80	0,00	0,00	10,64
Rec	620,83	389820,52	4484562,83	26,43	0,00	0,00	45,50
Rec	666,33	389838,87	4484604,47	6,70	0,00	0,00	32,88
Rec	699,21	389842,32	4484637,17	18,60	0,00	0,00	23,25
Rec	722,47	389849,02	4484659,44	36,35	0,00	0,00	35,31
Rec	757,77	389868,10	4484689,15	42,18	0,00	0,00	20,11
Rec	777,88	389880,47	4484705,00	38,85	0,00	0,00	38,61
Rec	816,49	389902,60	4484736,64	8,95	0,00	0,00	10,75
Rec	827,23	389904,10	4484747,28	383,14	0,00	0,00	90,49
Rec	917,73	389880,42	4484834,61	384,30	0,00	0,00	190,58
Rec	1108,31	389833,90	4485019,43	349,91	0,00	0,00	50,85
	1159,16	389797,89	4485055,34	349,91			

ANE IO	NO 10 -	ESTUDIO	DE E	(PROPI	ACIONES
ANCJU	14" ()_=	ESTUDIO	1)C C/	IPRUPI	AUJUNES

ANEJO Nº 10.- ESTUDIO DE EXPROPIACIONES

INDICE

1	INTRODUCCIÓN	1
2	OCUPACIÓN PERMANENTE	1
3	OCUPACIÓN TEMPORAL	1
4	SERVIDUMBRE	2

1.- INTRODUCCIÓN

Las obras que comprende el presente proyecto afectarán tanto al interior de la parcela que ocupa actualmente la estación depuradora, como a su camino de acceso y a la localidad vecina de Valdemaqueda, por la que atravesará la línea eléctrica.

No es necesario expropiar u ocupar permanentemente ninguna parcela de titularidad privada para el desarrollo de las obras, ni para el funcionamiento futuro.

Se describen a continuación las ocupaciones necesarias para la ejecución de las obras.

2.- OCUPACIÓN PERMANENTE

Los trabajos que se desarrollan fuera de la parcela de la actual E.D.A.R. tienen lugar en los siguientes terrenos públicos, produciendo en ellos las ocupaciones permanentes que se establecen a continuación:

- Viales del casco urbano de Valdemaqueda: la línea soterrada atraviesa la Avenida Puente Romano, desde el punto de entronque en su punto medio (a la altura del cruce con calle Acacias) bajando hacia el sur hasta el camino de tierras de Valdemaqueda a Villescusa, descrito en el siguiente punto. En esta Avenida se producirá la ocupación permanente asociada a 4 arquetas eléctricas de 1x1 m² de superficie, distribuidas según lo indicado en planos, además de otra en el punto de entronque, con una superficie de 1x1,3 m².
- Camino de tierra de Valdemaqueda a Villaescusa, propiedad de Canal de Isabel II Gestión S.A., siendo éste el que conduce hasta la E.D.A.R., con referencia catastral 28159A012001390000YK y 28159A006090020000YG. Se producirá la ocupación permanente asociada al establecimiento de 17 arquetas eléctricas de 1x1 m² de superficie, distribuidas según lo indicado en planos.

3.-OCUPACIÓN TEMPORAL

Para la ejecución de las obras, será necesaria la ocupación temporal por la maquinaria y operarios de las vías descritas en el apartado anterior. Seguidamente se cuantifica la ocupación prevista:

- Viales del casco urbano de Valdemaqueda: para la ejecución de la conducción subterránea será necesaria la apertura de la correspondiente zanja para introducir 4 tubos de Ø160mm y 350 m de longitud, de las cuales 38 ml discurren bajo acera y 312 ml bajo calzada. Además de la zanja, habrá de tener en cuenta el espacio necesario para la circulación y operación de la maquinaria.
- Camino de tierra de Valdemaqueda a Villaescusa: ejecución de conducción subterránea para la instalación de cuatro tubos de Ø160mm en una longitud de 800 m. Como en el caso anterior, la ocupación temporal comprenderá tanto la zanja en sí, como la maquinaria asociada a su apertura y ejecución.

El tiempo de esta ocupación temporal queda establecido por la duración de los trabajos de esta sección, definido en el Plan de Obra.

En cualquier caso, se solicitarán los permisos necesarios para realizar las obras en la vía pública.

4.-SERVIDUMBRE

Las servidumbres generadas por el proyecto se encuentran asociadas a la presencia de la canalización eléctrica en el subsuelo, por lo que su recorrido coincidirá con lo descrito en el apartado anterior, tanto para el camino de Valdemaqueda a Villaescusa, como para los viales del casco urbano de Valdemaqueda.

La extensión de esta servidumbre será la necesaria para la apertura de la zanja en caso de incidencias que motiven la sustitución o reparación de la canalización ejecutada.